首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
•Bacterially-mediated coupled N and Fe processes examined in incubation experiments. •NO3 reduction was considerably inhibited as initial Fe/N ratio increased. •The maximum production of N2 occurred at an initial Fe/N molar ratio of 6. •Fe minerals produced at Fe/N ratios of 1–2 were mainly easily reducible oxides. The Fe/N ratio is an important control on nitrate-reducing Fe(II) oxidation processes that occur both in the aquatic environment and in wastewater treatment systems. The response of nitrate reduction, Fe oxidation, and mineral production to different initial Fe/N molar ratios in the presence of Paracoccus denitrificans was investigated in 132 h incubation experiments. A decrease in the nitrate reduction rate at 12 h occurred as the Fe/N ratio increased. Accumulated nitrite concentration at Fe/N ratios of 2–10 peaked at 12–84 h, and then decreased continuously to less than 0.1 mmol/L at the end of incubation. N2O emission was promoted by high Fe/N ratios. Maximum production of N2 occurred at a Fe/N ratio of 6, in parallel with the highest mole proportion of N2 resulting from the reduction of nitrate (81.2%). XRD analysis and sequential extraction demonstrated that the main Fe minerals obtained from Fe(II) oxidation were easily reducible oxides such as ferrihydrite (at Fe/N ratios of 1–2), and easily reducible oxides and reducible oxides (at Fe/N ratios of 3–10). The results suggest that Fe/N ratio potentially plays a critical role in regulating N2, N2O emissions and Fe mineral formation in nitrate-reducing Fe(II) oxidation processes.  相似文献   

2.
A simple, sensitive column solid-phase extraction procedure for separation and preconcentration of Cu(II), Ni(II), Co(II), and Cd(II) in spiked and natural water samples using 2,3-dihydroxynaphthalene-functionalized Amberlite XAD-4 (XAD-4-DHN) chelating resin prior to their determination by inductively coupled plasma atomic emission spectrometry was discussed. The optimum experimental parameters such as pH, volume of sample and eluent, flow-rates of uptake and stripping, and sorption capacity of the chelating resin, were evaluated. The effect of the electrolytes and the cations on the preconcentration of metal ions was also investigated. The chelating resin could be reused for more than 20 cycles of sorption–desorption without any significant change (<1.0%). Recoveries obtained from this method range from 96 to 102% with R.S.D of 2.50 (n = 4). The detection limits for Cu(II), Ni(II), Co(II), and Cd(II) were found to be 1.9, 0.9, 1.2 µg, and 1.4 µg L?1, respectively. The proposed method was applied for the determination of Cu(II), Ni(II), Co(II), and Cd(II) in spiked, tap water, and river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号