首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The effect of chronic quinalphos exposure (0.025 mg/1) for 15 and 30 days on the levels of glucose, lactic acid and haemoglobin in the blood; glycogen and lactic acid contents of the liver and muscles; and the activities of hexokinase, lactate dehydrogenase, pyruvate dehydrogenase and succinate dehydrogenase in liver, kidney, intestine, brain, gills and muscles was examined. Blood glucose, lactic acid and haemoglobin levels decreased in quinalphos exposed fish. Glycogen content of liver and muscles increased but lactic acid decreased. Hexokinase was inhibited in intestine and muscles after 30 days of exposure but increase in enzyme activity was noted in gills. Lactate dehydrogenase activity was inhibited in all the six tissues. Pyruvate dehydrogenase activity of liver, kidney, gills and muscles was inhibited. However, in brain the enzyme activity was elevated. Succinate dehydrogenase activity was elevated in intestine and inhibited in other tissues.  相似文献   

2.
Alterations in the activities of some enzymes in the brain, gills, intestine, kidney, liver and muscles have been examined in the fresh water murrel, , after exposure to a sublethal concentration of mercuric chloride (3 μg/1) for 15, 30 and 60 days. The results revealed that after 15 days of exposure amino acid oxidase activity was elevated in brain and liver and inhibited in intestine. The activity of xanthine oxidase was increased in gills, and inhibited in kidney. Thirty days exposure produced significant inhibition in the activities of malate dehydrogenase in liver, glutamate dehydrogenase in gills and brain, aminoacid oxidase in gills, and xanthine oxidase in liver and intestine. In contrast, glutamate dehydrogenase in intestine, kidney and liver and aminoacid oxidase in brain and liver were elevated. After 60 days of treatment, a decrease in the activity of glucose-6-phosphatase was recorded in gills, intestine, kidney and liver. Hexokinase activity in kidney and liver, and malate dehydrogenase in all the six tissues were inhibited. Glutamate dehydrogenase activity in intestine, kidney and liver remained higher than in control fish. In brain, kidney and liver the activity of aminoacid oxidase was elevated, but in gills the enzyme activity decreased. Xanthine oxidase activity was inhibited in intestine and liver.  相似文献   

3.
K.V. Sastry  D.R. Rao 《Chemosphere》1982,11(12):1203-1209
Alterations in the activities of some enzymes in the brain, gills, intestine, kidney, liver and muscles have been examined in the fresh water murrel, Channapunctatus, after exposure to a sublethal concentration of mercuric chloride (3 μg/1) for 15, 30 and 60 days. The results revealed that after 15 days of exposure amino acid oxidase activity was elevated in brain and liver and inhibited in intestine. The activity of xanthine oxidase was increased in gills, and inhibited in kidney. Thirty days exposure produced significant inhibition in the activities of malate dehydrogenase in liver, glutamate dehydrogenase in gills and brain, aminoacid oxidase in gills, and xanthine oxidase in liver and intestine. In contrast, glutamate dehydrogenase in intestine, kidney and liver and aminoacid oxidase in brain and liver were elevated. After 60 days of treatment, a decrease in the activity of glucose-6-phosphatase was recorded in gills, intestine, kidney and liver. Hexokinase activity in kidney and liver, and malate dehydrogenase in all the six tissues were inhibited. Glutamate dehydrogenase activity in intestine, kidney and liver remained higher than in control fish. In brain, kidney and liver the activity of aminoacid oxidase was elevated, but in gills the enzyme activity decreased. Xanthine oxidase activity was inhibited in intestine and liver.  相似文献   

4.
BaP is one of the most studied PAH, due to its ubiquitous presence in aquatic environments and toxicity to aquatic organisms. The main goal of this study was to assess BaP effects in Nile Tilapia after waterborne and dietary exposures, through the evaluation of EROD and GST activities in liver, gills and intestine, and BaP metabolites in bile; and also to evaluate the usefulness of these commonly used biomarkers after two different routes of exposure. Waterborne exposure to BaP led to a significant induction of EROD in all tissues analyzed (644%, 1640% and 2880% in relation to solvent in liver, gill and intestine respectively) while in dietary exposures EROD was induced only in intestine (3143%) after exposure to high BaP concentrations. GST activities with CDNB were slightly induced in liver (40%) and in gill (66%) after water exposure to BaP, and in intestine after dietary exposure to low BaP concentrations (182%). BaP metabolites in bile increased after both exposure routes, and were highly correlated with EROD activity after water exposure. In summary, this work has shown that the effects of BaP on biotransformation pathways depend on the route of exposure. Moreover, barrier tissues like gills and intestine also have an important role in the first-pass metabolism of BaP, reducing the amount of parent compound that reaches the liver to be metabolized. For that reason, EROD activity as a biomarker of exposure should also be applied in extrahepatic organs, like gills and intestine, in monitoring studies. Biliary BaP type metabolites are good reflectors of contamination levels under both exposure routes, while GST activity with CDNB as substrate, as a phase II enzyme, does not seem a reliable biomarker of exposure to BaP regardless the route of exposure.  相似文献   

5.
6.
Kumar A  Sharma B  Pandey RS 《Chemosphere》2011,83(4):492-501
In the present study, two fresh water fishes namely, Channa punctatus and Clarias batrachus, were exposed to three sub-acute concentrations of synthetic pyrethroid, cypermethrin, for 96 h to evaluate the role of amino acids in fulfilling the immediate energy needs of fishes under pyrethroid induced stress as well as to find out the mechanism of ammonia detoxification. The experiments were designed to estimate the levels of free amino acid, urea, ammonia and the activities of aspartate aminotransferase (AAT), alanine aminotransferase (AlAT), glutamate dehydrogenase (GDH), glutamine synthetase (GS) and arginase in some of the vital organs like brain, gills, liver, kidney and muscle of both fish species. The significant decrease in the levels of amino acids concomitant with remarkable increase in the activities of AAT, AlAT and GDH in these vital tissues of fish species elucidated the amino acid catabolism as one of the main mechanism of meeting out the immediate energy demand of the fishes in condition of cypermethrin exposure. The levels of ammonia were significantly increased at 10% of 96 h LC(50) of cypermethrin in the different organs such as brain, gills, liver, kidney and muscle of both fish species while 15% and 20% concentrations of 96 h LC(50) of cypermehrin registered remarkable decline in both fish species. The differential increment in the activities of GDH, GS and arginase and in the level of urea established three different alternative mechanisms of ammonia detoxification. The results indicated that in C. punctatus, the prevalent mode of nitrogen excretion is in the form of conversion of ammonia into glutamine and glutamate while in C. batrachus, the excessive nitrogen is excreted in the form of urea synthesized from ammonia.  相似文献   

7.
Studies have been conducted to determine the distribution of dieldrin in various tissues of rainbow trout when exposed to several dieldrin concentrations. Medium sized fish with an average weight and length of 195.4 +/- 30.5 g and 25.7 +/- 1.4 cm, respectively, were placed in groups of 6 in 300 L tanks containing purified and aerated water and maintained at 10 degrees C. Following an acclimatization period of 10 days, each group of fish was exposed to one of four dieldrin concentrations ranging from 50 to 80 ppb. After 24 hours, the fish were taken out of the tanks and sacrificed. The brain, gills, liver, muscles and skin were collected from each fish. Dieldrin was extracted from each tissue using SPE techniques and analyzed by both gas chromatography (GC) and enzyme linked immunosorbent assay (ELISA). Results of analyses by the two techniques were highly correlated. The results also showed that liver and skin tissues had the highest level of dieldrin residues. In comparing the means of the six fish samples, it was found that liver or skin contained about 1.5-fold the level in brain, about 4.0 fold the level in muscles and about 6.5 fold the level in gills. Immunoassay proved to be as reliable an analytical tool as gas chromatography in this case.  相似文献   

8.
Experiments were carried out to investigate the accumulation and elimination of cadmium (Cd) in tissues (gill, intestine, kidney, liver and muscle) of juvenile olive flounder, Paralichthys olivaceus, exposed to sub-chronic concentrations (0, 10, 50, 100 microg l(-1)) of Cd. Cd exposure resulted in an increased Cd accumulation in tissues of flounder with exposure periods and concentration, and Cd accumulation in gill and liver increased linearly with the exposure time. At 20 days of Cd exposure, the order of Cd accumulation in organs was gill > intestine > liver > kidney > muscle and after 30 days of exposure, those were intestine > gill > liver > kidney > muscle. An inverse relationship was observed between the accumulation factor (AF) and the exposure level, but AF showed an increase with exposure time. During the depuration periods, Cd concentration in the gill, intestine and liver decreased immediately following the end of the exposure periods. No significant difference was found Cd in concentration in the kidney and muscle during depuration periods. The order of Cd elimination rate in organs were decreased intestine > liver > gill during depuration periods.  相似文献   

9.
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to AsIII and AsV were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb AsV. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to AsIII and AsV can induce different responses in gills and liver of this aquatic organism.  相似文献   

10.
Nunes B  Carvalho F  Guilhermino L 《Chemosphere》2004,57(11):1581-1589
The objective of this study was to investigate both acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and catalase (CAT) of the mosquitofish (Gambusia holbrooki). AChE, commonly used as a biomarker of neurotoxicity, was determined in the total head. LDH, an important enzyme of anaerobic metabolism, was quantified in dorsal muscle, and CAT, enzyme which has been used as indicative parameter of peroxisome proliferation, was determined in the liver. Furthermore, alterations of body and liver weight were also determined, through the calculation of the ratios final body weight/initial body weight, liver weight/final body weight, liver weight/gills weight and liver weight/head weight. Acute exposure of G. holbrooki to both clofibrate and clofibric acid induced a decrease in liver CAT activity, an increase in muscle LDH activity, while no effects were observed on AChE activity. However, chronic exposure did not alter significantly the enzymatic activities, suggesting reduced or null effects over these pathways, relative to effects reported in other species. No effects were observed for the calculated ratios, except a significant weight reduction for males chronically exposed to clofibrate.  相似文献   

11.
12.

The authors investigated the arsenic (As) accumulation in different tissues (muscle, gill, liver, stomach, and intestine) and the possible correlation between tissue concentration and hematological parameters in mullet (Mugil cephalus Linnaeus, 1758) caught in Faro Lake (Messina, Sicily, Italy). On all fish, hematological analyses of blood samples, measurement of biometric indices, and the removal of the muscles, gills, liver, stomach, and intestine for the determination of arsenic concentration were performed. A hemogram was performed to find effects of arsenic concentration in tissues on hematological variables. One-way analysis of variance showed significant differences of arsenic concentration in different tissues, with higher values in the gill. The correlation between hematological parameters and tissue arsenic concentration showed a statistical significance for red blood cell (RBC), hemoglobin concentration (Hb), and hematocrit (Hct) with the liver As concentration. Biometric indices (weight, length, and fork length) showed a significant correlation with As concentration of the muscle and liver also. Our results indicate the role of some hematological parameters as biomarkers useful to monitoring anthropogenic load of arsenic in water and sediment, because variations of these parameters represent one of the effects that arsenic exposure can have on fish.

  相似文献   

13.
In Anabastestudineus, the per cent changes noted in the aspartate aminotransferase (AAT) activities of gill, brain, intestine, liver, muscle and kidney until 6 hr of exposure to lethal concentration (10.5 mg/L disyston) were relatively much less when compared to those of sublethal concentration (4.0 mg/L disyston). But in the case of alanine aminotransferase (AIAT) activity, the tissues which showed such effect (paradoxical effect) were gill, brain and liver.  相似文献   

14.
The study reports the accumulation, distribution and metabolism of technical endosulfan in Jenynsia multidentata. Adult females were exposed to acute sublethal concentrations (0.072, 0.288 and 1.4 μg L−1). After 24 h, fish were sacrificed and gills, liver, brain, intestine and muscle were removed. Results show that both isomers of technical-grade endosulfan (α- and β-) are accumulated in fish tissues and biotransformation to endosulfan sulfate occurs at all concentrations tested. Significantly differences in endosulfan accumulation were only found at 1.4 μg L−1 but not between the lowest concentrations. However a similar distribution pattern was observed at all exposure levels where liver, intestine and brain had the highest levels of α-, β-endosulfan and endosulfan sulfate. Moreover, liver and brain showed the highest endosulfan sulfate:α-endosulfan ratios due to high biotransfomation capacity. J. multidentata demonstrated to be a sensitive species under exposure to technical endosulfan and, therefore, could be used to assess aquatic pollution.  相似文献   

15.
Freshwater fish Cyprinus carpio was selected for the study of bioaccumulation of organochlorinated pesticides in tissues like gills, muscle, intestine, kidney, and liver in a continuous fed system. The pesticides used were Aldrin, Dieldrin, BHC, and DDT. The bioaccumulation of Dieldrin was maximum of 85.0 microg g(-1) wet weight in liver tissue while minimum of 7.30 microg g(-1) wet weight for DDT at 30 days exposure time. Bioconcentration factor (BCF) has followed the same trend in liver tissue for Dieldrin and DDT. The rate of bioaccumulation was found to be maximum of 4.3879 microg g(-1) wet weight in liver tissue and minimum of 0.0021 microg g(-1) wet weight in gill tissue for 30 days exposure. As evidenced by the increasing values of BCF, pesticide uptake also showed increased trend with the increase in exposure time. A high correlation coefficient ranging between 0.7247 and 0.9616 between the pesticide concentration and exposure time was observed. Based on actual BCF values, log Kow were calculated and the values are well within the reported values of 6.5 indicating efficient relationship between BCF and log Kow because beyond the 6.5 the bioconcentration levels off.  相似文献   

16.
Dezfuli BS  Simoni E  Giari L  Manera M 《Chemosphere》2006,64(10):1684-1694
The effects of acute exposure to the herbicide terbuthylazine (3.55, 5.01 and 7.08 mg l(-1)) on the cells of farmed European sea bass, Dicentrarchus labrax L., were investigated by means of light and electron microscopy. In gills of treated fish, the number of chloride cells (CCs) and rodlet cells (RCs) increased significantly within 24 h and 48 h, respectively; the intestine showed the largest increase in RCs linked to treatment and exposure time. In kidney, 24 h exposure induced a significant increase in RCs and the number and global area of macrophage aggregates (MAs). Treated fish displayed cellular and/or ultrastructural alterations in all the organs examined. In the gills necrosis, lamellar and cellular oedema, epithelial lifting, telangectasia, and fusion of secondary lamellae were encountered. The liver presented myelin-like figures, cytoplasmic rarefaction and acute cell swelling of hepatocytes. In both organs, the severity of damage was dose-dependent. In RCs of gills, the intestine and kidney of exposed sea bass, high cytoplasmic vacuolization, myelin-like figures, cristolysis and varying degrees of rodlet degeneration were observed. Extensive rodlet expulsion occurred in the gut lumen. Exposure to terbuthylazine also affected the renal tubular epithelial cells, which exhibited 'blebs'. Damage to the intestinal epithelial cells was also observed.  相似文献   

17.
We studied the bioaccumulation of lead in selected tissues of Prussian carp Carassius gibelio (Bloch, 1782) during 12 and 24 months exposure to different doses of this metal in feed and the elimination of lead from tissues during the following 12-month depuration period. Lead concentration was determined using atomic absorption spectrometry method. The highest lead concentrations were observed at 2.0?±?0.54 to 7.4?±?1.1 mg?kg?1 in the kidney, 3.0?±?0.13 to 5.2?±?0.17 mg?kg?1 in the bone, and 4.5 (±0.4)?mg?kg?1 in the hepatopancreas of fish from groups exposed to lead dietary concentration from 8 to 49 mg?kg?1 for 24 months. The rate of accumulation were generally the highest at the beginning of exposure as evidenced by the highest monthly increments of bioaccumulation observed after 3 months of contamination for muscles, hepatopancreatic gland, intestine, and gills. Also analysis of the monthly increments of lead bioaccumulation in bone tissue and the highly significant coefficients of correlation indicate that the dynamics of accumulation are clearly dependent on dose of exposure. Depuration of accumulated lead from the organs depended mainly on tissue and duration of elimination period. Very rapid depuration was observed in soft tissues such as the intestine or muscles. Very low elimination was observed for scales and bones where until the end of the experiment highly significant lead concentration differences were observed in all groups in relation to the control group. Chronic dietary exposure in the range of 8–49 mg Pb?kg?1 resulted in no significant effects on the growth and survival of Prussian carp females.  相似文献   

18.
This field study investigates the morphological indices (condition index, hepatosomatic index) and biochemical (catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE), metallothionein (MT), lipid peroxidation) parameters in liver, gills and kidney of common sole (Solea solea) originating from different sites of the Tunisian coast area impacted by different anthropogenic activities. Differences among sites and tissues for AChE, GST, CAT, MT and TBARS were found and possibly related to known sources of domestic and industrial discharges in the studied sites. Liver, gills and kidney CAT, liver and kidney MT and brain AChE were key biomarkers to discriminate fish of different sites. So, we suggest using these biomarkers in future biomonitoring.  相似文献   

19.
The suitability of metallothioneins (MT) in fish as biomarker of exposure to mercury has been questioned. Therefore, this study aimed at investigating the relationship between external levels of exposure, mercury accumulation and MT content, assessing species and tissue specificities. Two ecologically different fish species - Dicentrarchus labrax and Liza aurata - were surveyed in an estuary historically affected by mercury discharges. Total mercury (T-Hg) and MT content were determined in gills, blood, liver, kidney, muscle and brain. All tissues reflected differences in T-Hg accumulation in both species, although D. labrax accumulated higher levels. Regarding MT, D. labrax revealed a depletion in brain MT content and an incapacity to induce MT synthesis in all the other tissues, whereas L. aurata showed the ability to increase MT in liver and muscle. Tissue-specificities were exhibited in the MT inducing potential and in the susceptibility to MT decrease. L. aurata results presented muscle as the most responsive tissue. None of the investigated tissues displayed significant correlations between T-Hg and MT levels. Overall, the applicability of MT content in fish tissues as biomarker of exposure to mercury was uncertain, reporting limitations in reflecting the metal exposure levels and the subsequent accumulation extent.  相似文献   

20.
The aim of the present study was to assess the effect of the exposure of Leporinus obtusidens (Piava) to zinc and copper on catalase activity in the liver, delta-aminolevulinate dehidratase (delta-ALA-D) activity in liver, muscle, brain and kidney, and thiobarbituric reactive species (TBARS) in brain, muscle and liver. In addition, hematological parameters were measured in blood. The fish were exposed to 10% and 20% of the derived LC(50) values, 2.3 and 4.6 mg Zn l(-1) and 0.02 and 0.04 mg Cu l(-1), and sampled on days 30 and 45. Exposure to Zn(II) and Cu(II) decreased hematological parameters and also delta-ALA-D activity mainly in liver and kidney at all concentrations tested. Liver catalase activity increased after zinc or copper exposure at all concentrations and exposure times tested. Thiobarbituric reactive substances (TBARS) increased in the brain and liver of the fish exposed to zinc(II) for 45 days at both metal concentrations. In muscle, zinc(II) increased TBARS production at both exposure times and concentrations tested. Copper(II) exposure reduced the TBARS levels in liver at both concentrations and times tested. In brain, there was a decrease in TBARS levels only after 45 days of exposure. In muscle, this decrease was observed after 30 days of exposure at both concentrations. Although zinc and copper are required as microelements in the cells, our results showed that the sublethal concentrations of these metals can change biochemical parameters which may alter normal cellular function. These results pointed out the differential sensitivity of fish tissues to essential, but also toxic and environmentally relevant metals. The alterations of distinct biochemical parameters in fish tissues certainly contribute to the toxicity of Zn and Cu, and are of importance for an area that has been growing and has still been poorly explored in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号