首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
This paper presents the results of an evaluation of excessive salt emissions from 16 hogged fuel boilers in Washington, Oregon, and Alaska. Logs transported or stored in sea water, absorb substantial amounts of salt which is noncombustible, and is emitted as a fine particulate when the hogged fuel is burned, contributing to opacity and particulate emissions. Control measures considered are fuel pretreatment, combustion modification, use of conventional particulate control devices (electrostatic precipitators, fabric filters, and wet scrubbers), and several novel particulate control devices.The best available control technology appears to be a mechanical collector-fabric filter combination; some electrostatic scrubber type devices have also shown excellent capability.  相似文献   

2.
In October 1977, Southwestern Public Service Company executed a contract with the U.S. Environmental Protection Agency that called for a study to assess the performance of a fabric filter system installed on a large utility boiler that utilizes low sulfur Western coal. The project is now into its second year and the objectives of this paper are to describe the scope and intent of the study, as well as to report progress to date. In addition, some of the difficulties that we have encountered are discussed. Although some of these problems have resulted in procedural changes, the intent of the study has not been altered. This paper describes work being done in specific areas with which both the EPA and Southwestern are connected. These include fabric assessment, data collection, selection and installation of instrumentation, and overall fabric filter system performance. Results of the first performance test are also reviewed and the installation of a pilot baghouse is discussed.  相似文献   

3.
As a follow-up to a pilot study, a full scale investigation of applying high velocity fabric filtration to coal-fired boiler fly ash control was conducted. Two filter systems were separately applied to two 60,000 lb/h coal-fired boilers. Performance evaluations conducted over the course of a year included total mass removal efficiency and fractional efficiencies. One filtration system employed Teflon felt as the filter media while the second system employed Gore-Tex, a Polytetrofluorethylene (PTFE) laminate on PTFE woven backing. During the course of the year, a limited number of glass felt and woven glass bags were introduced into the house containing Gore-Tex. As a separate option, the second system was outfitted entirely with woven glass bags. Preliminary results indicate acceptable performance at air-to-cloth ratio of 6 to 1. Future plans call for utilizing one of the baghouse systems for SO2 removal.  相似文献   

4.
5.
三峡水库入库污染负荷研究(Ⅱ)--蓄水后污染负荷预测   总被引:8,自引:2,他引:6  
在文献\[1\]基础上,预测三峡水库2010年和2015年的入库污染负荷。采用包络线法预测排污得到有效控制的低负荷水平(最佳状态),排污继续恶化到一定限度的高负荷水平(最坏状态),以及按正常排污介于高、低负荷水平之间的中负荷水平(一般状态)。在预测入库污染负荷时,把长江、嘉陵江、乌江进入的背景水质污染负荷分为天然背景负荷和上游贡献负荷,天然背景负荷保持不变,上游贡献负荷根据上游水污染控制规划按高、中、低负荷水平预测。预测表明,库区内的污染负荷占入库总污染负荷的比例较小。中负荷水平下,库区污染源占入库总负荷的比例为8.50%~22.93%。污染负荷主要来自长江、嘉陵江、乌江上游的贡献和天然背景负荷。在低、中、高三种负荷水平下,扣除天然背景值时,2010年低负荷水平时BOD5库区负荷占28.8%、中负荷占32.5%、高负荷占35.04%。总磷出现反常,库区的总磷的污染负荷在低负荷水平下,所占入库负荷的比例高于中负荷水平、但小于高负荷水平。2010年、2015年库区的主要污染物质和污染负荷排放分布与现状(1998年)基本相同。主要排污区域为重庆主城区,2010年预测重庆主城区CODCr负荷占库区总负荷的比例,高、中、低负荷水平分别为:39.6%、36.2%、21.6%,低负荷比高负荷降低18%。库区的主要污染源为农业面源,2010年库区农业面源中CODCr负荷占总负荷的比例在高、中、低负荷水平下分别为:38.9%、47.5%、70.4%。同时,随着库区社会经济发展,污染负荷有逐步增大的趋势,到2015年所有污染物及负荷水平,均大于2010年和1998年。  相似文献   

6.
The recovery of energy from the combustion of municipal solid wastes is becoming an attractive alternative as landfill space becomes scarce and the availability of fossil fuels decreases. Particulate emissions from “waste-as-fuel” processes, however, may differ significantly in chemical and physical properties from particulate emissions produced by firing only coal. Such differences can affect the design and operation of air pollution control equipment. Presented in this paper are the results of a 2-month test program at Ames, Iowa, with a mobile electrostatic precipitator (ESP) and a mobile scrubber supplied by the U.S. Environmental Protection Agency (EPA), Industrial Environmental Research Laboratory (IERL), Research Triangle Park. PEDCo Environmental, Inc., and Acurex Corporation jointly conducted the test program to examine the effect of burning refuse-derived fuel (RDF) on particulate and heavy metal control efficiencies. The mobile ESP was used only as a primary control device, whereas the mobile scrubber was tested both upstream and downstream of the existing full-scale ESP. This paper also presents a status report on a PEDCo test program with a pilot fabric filter at Ames.  相似文献   

7.
During recent decades, considerable effort has been expended world-wide to reduce dependency on petroleum fuels for power generation and transportation through the search for suitable alternative fuels that are environmentally friendly. In this respect, vegetable oils are a promising alternative to diesel fuel. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming and piston ring sticking and thickening of lubrication from long-term use in diesel engines. These problems can be eliminated or minimised by transesterification of the vegetable oils to form monoesters. Although transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than those of petroleum diesel fuel. The performance of a diesel engine with such biodiesel operation can be improved further with the concept of the low heat rejection (LHR) engine. In the LHR engine, combustion surfaces on the pistons, cylinder walls and valves can be coated with ceramic materials. The objective of this study was to apply the LHR engine concept for improving engine performance when either honge biodiesel, known as honge oil methyl ester (HOME), or neem biodiesel, known as neem oil methyl ester (NOME) oils was used as an alternative fuel. For this purpose, experiments were conducted on a single cylinder, four-stroke, direct injection, water-cooled compression ignition engine using diesel, HOME and NOME oils at different injection timings of 19, 23 and 27° before top dead centre (BTDC) with and without the induction of exhaust gas recirculation (EGR). The percentage of EGR was varied from 5 to 20% in steps of 5%. The results showed that specific fuel consumption and brake thermal efficiency were improved for both of the biodiesel fuels in the LHR engine. An EGR of 10% resulted in better performance with trade-off between oxides of nitrogen and hydrocarbons/carbon monoxide emissions and hence 10% EGR is taken as the best of the range from 5 to 20%. However, readings with other EGR ratios are not reported.  相似文献   

8.
Owing to the ever-increasing vehicle population, the consumption of diesel fuel in the transportation, agricultural and industrial sectors has increased at an alarming rate. This has led to rapid fossil fuel depletion, ozone depletion and environmental degradation, which have become a serious concern. Search for alternative renewable and clean energy fuel sources to mitigate the emissions of greenhouse gases is continuing, and attempts to find different techniques for efficient utilization of these fuels are also undertaken. Biodiesel being an oxygenated fuel obtained from vegetable oils has received greater attention over the years as a promising alternative to diesel fuel. However, vegetable oils exhibit high viscosity, poor volatility and poor cold-flow characteristics. These characteristics can cause the following problems in the engine when run for a longer duration: injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication. These problems can be eliminated or minimized by adopting suitable fuel processing techniques to obtain biodiesels from vegetable oils. The fuel processing techniques vary widely, which include transesterification, supercritical methanolysis, ultrasonic and continuous microwave-assisted transesterification methods. In the present study, the transesterification method is effectively used to obtain biodiesels from non-edible oils of honne and cotton seed. The biodiesels obtained from these oils were used in the unmodified diesel engine to check their feasibility as diesel engine alternatives. Different thermal barrier coatings (TBCs) were applied on the piston, cylinder head, and inlet and exhaust valve surfaces of the diesel engine in order to make it a fully adiabatic engine. The engine with such TBCs is called a low heat rejection engine. For the present study, the TBC of partially stabilized zirconia (PSZ) and aluminium oxide (Al2O3) were selected. Finally, the performance of the diesel engine fuelled with different biodiesels in both conventional and thermal barrier-coated modes was compared. The thermal barrier-coated engine with the PSZ version showed better performance with increased nitric oxide emissions when compared with the Al2O3 coating.  相似文献   

9.
A program has been initiated to assess an SO2 removal method wherein dry powdered sodium compounds are injected into the gas stream ahead of the baghouse filter. The compounds are collected on the surface of the filter bags for reaction with the gaseous SO2. Initial program efforts include a survey of suitable and available sodium compounds, methods of preparing the compounds for injection, and an invistigation of environmentally acceptable methods of disposal.  相似文献   

10.
In this study, balanites Aegyptiaca (L.) Del biodiesel was blended in proportions of 10% and 20% on the volume basis with diesel fuel and tested in a single cylinder, VCR diesel engine under measured load conditions with varied EGR rates (0, 10 and 20%). The results showed that B10 and B20 blends shown a significant reduction rate in terms of NOx emissions that were familiar with biodiesel blends. At peak load conditions, BTE increased slightly for test fuel blends compared with pure diesel fuel while the BSFC rate and EGT suffered from increasing and decreasing nature with respect to blending percentage. From the emissions point of view, with the increase in blends percentage, a significant reduction rate is observed in terms of CO and HC concentrations (up to 12.34 and 17.5%, respectively) while NOx emissions decreased at peak load conditions (up to 24.34%). HC and CO emissions decreased with increase in blends percentage. However, lower levels of NOx and EGT (up to 21.37 and 8.47%, respectively) and the average increase in terms of BTE and BSFC (up to 2.83 and 2.9%, respectively) can be realised with B20 test fuel blend under 20% EGR rate.  相似文献   

11.
Residents of Xuan Wei County in China have unusually high lung cancer mortality that cannot be attributed to tobacco use or occupational exposure. They are exposed to smoke from unvented, open pit coal or wood fires (often used for cooking and heating). The variation in lung cancer rates among communes within the county suggests that indoor combustion of smoky coal may be the prime determinant of lung cancer. To characterize the air in Xuan Wei homes, samples of air particles and semivolatile organic compounds were collected from homes located in two communes; one commune has a high rate of lung cancer, and the other has a low rate. Samples collected in the commune where the lung cancer rate is high and where smoky coal is the predominant fuel contained high concentrations of small particles with high organic content; organic extracts of these samples were mutagenic. Samples from homes in the wood-burning commune, which has a low rate of lung cancer, consisted mostly of larger particles of lower organic content and mutagenicity. The smoky coal sample was a mouse skin carcinogen and was a more potent initiator of skin tumors in comparison to the wood or smokeless coal sample.  相似文献   

12.
北京市发展CNG汽车的条件与前景分析   总被引:1,自引:0,他引:1  
北京市汽车排放污染物贡献率已达到:HC73.5%,CO63.4%,NOx46%。用CNG代替汽油作汽车燃料,可使CO减少97%、HC减少72%、NOx减少39%、CO2减少24%、SO2减少90%。建立CNG加气站和CNG汽车改装这两个CNG应用关键问题在技术上、经济上都是可行的。北京市CNG燃料来源有保障。北京市车辆都比较适合使用CNG气体燃料。北京有很强的CNG汽车产业科技力量。对北京市当前发展CNG汽车产业提出了一些建议。  相似文献   

13.
Due to energy crisis and shortage of fossil fuel, there is a growing interest in alternative fuel for internal combustion engine. Producer gas presents a very promising alternative fuel to diesel since it is a renewable and clean burning fuel having properties similar to that of diesel. In this study, a twin cylinder dual fuel diesel engine is experimentally optimized for maximum diesel saving and lower emissions, without any undue vibration of engine using woody biomass producer gas. The test is carried out to study the performance and emission parameters of the engine in diesel mode and dual fuel mode at different gas flow rates under different load conditions. The study reveals that maximum diesel savings is found to be 83% at optimum gas flow rate and 8 kW load. Carbon monoxide, hydrocarbon and carbon dioxide emissions in dual fuel mode were higher compared with diesel mode at all test ranges. However, the main pollutants, such as nitrogen oxide and smoke, decrease substantially in the dual fuel mode compared with the diesel mode. Lower brake thermal efficiency and higher brake-specific energy consumption as well as exhaust gas temperature are observed in dual fuel mode compared with diesel mode.  相似文献   

14.
A chemical pathway combining reverse water gas shift, Fischer‐Tropsch synthesis and hydro‐cracking was considered to re‐synthesise jet fuel from CO2 captured at high purity by oxy‐fuelling of a typical coal‐fired power station (Drax, UK). The oxygen for oxy‐fuelling and hydrogen for the fuel re‐synthesis process are sourced by electrolysis of water. According to material and energy balances , 3.1 MT/year of jet fuel and 1.6 MT/year each of gas oil and naphtha can be produced from the Drax annual emissions of 20 MT of CO2, sufficient to supply 23% of the UK jet fuel requirements. The overall re‐synthesis requires 16.9 GW, to be sourced renewably from (offshore) wind power, and releases 4.4 GW of exothermic energy giving scope for improvements via process integration. The energy re‐synthesis penalty was 82% ideally and 95% on a practical basis. With the cost of offshore wind power predicted to reduce to 2.0 p/kWh by 2020, this ‘re‐syn’ jet fuel would be competitive with conventional jet fuel, especially if carbon taxes apply. The re‐use of CO2 sequestrated from coal power stations to form jet‐fuel would halve the combined CO2 emissions from the coal power and aviation sectors.  相似文献   

15.
Microalgae has been considered potential biofuel source from the last decade owing to its versatile perspectives such as excellent capability of CO2 capture and sequestration, water treatment, prolific growth rate and enormous energy content. Thus, energy research on microalgae is being harnessed to mitigate CO2 and meet future energy demands. This study investigated the bioenergy potential of native blue-green microalgae consortium as initial energy research on microalgae in Brunei Darussalam. The local species of microalgae were assembled from rainwater drains, the species were identified as Stigonematales sp. and physical properties were characterised. Sundried biomass with moisture content ranging from 6.5% to 7.37% was measured to be used to determine the net and gross calorific value and they were 7.98 MJ/kg-8.57 MJ/kg and 8.70 MJ/kg-9.45 MJ/kg, respectively. Besides that, the hydrogen content, ash content, volatile matter, and bulk density were also experimented and they were 2.56%-3.15%, 43.6%-36.71%, 57–38%-63.29% and 661.2 kg/m3-673.07 kg/m3, respectively. Apart from experimental values, other physical bioenergy parameters were simulated and they were biomass characteristic index 61,822.29 kg/m3-62,341.3 kg/m3, energy density 5.27 GJ/m3-5.76G J/m3 and fuel value index 86.19–88.54. With these experimental results, microalgae manifested itself a potential source of biofuel feedstock for heat and electricity generation, a key tool to bring down the escalated atmospheric greenhouse gases and an alternation for fossil fuel.  相似文献   

16.
In light of rising cost of fossil fuels and fears of its depletion, coupled with the increase in energy demand and the rise in pollution levels, governments worldwide have had to look at alternative energy resources. Combining renewable energy generation like solar power with superior storage and conversion technology such as hydrogen storage, fuel cells and batteries offers a potential solution for a stand-alone power system. The aim of this paper was to assess the techno-economic feasibility of using a hybrid energy system with hydrogen fuel cell for application in an eco-house that will be built in Sultan Qaboos University, Muscat, Oman. Actual load data for a typical Omani house of a similar size as the eco-house was considered as the stand-alone load with an average energy consumption of 40 kW/day and 5 kW peak power demand. The National Renewable Energy Laboratory's Hybrid Optimisation Model for Electric Renewable software was used as a sizing and optimisation tool for the system. It was found that the total annual electrical energy production is 42,255 kW and the cost of energy for this hybrid system is 0.582 $/kW. During daylight time, when the solar radiation is high, the photovoltaics (PV) panels supplied most of the load requirements. Moreover, during the evening time the fuel cell mainly serves the house with the help of the batteries. The proposed system is capable of providing the required energy to the eco-house during the whole year using only the solar irradiance as the primary source.  相似文献   

17.
This paper compares an existing unreliable grid supply with a proposed PV–biodiesel hybrid energy system in order to find the feasibility of the latter for improvement in reliability of power supply, lower pollutant emissions and saving of coal reserves. In the present study, the electrical load of a cement technology institute located in Bhilai, India, has been selected for the purpose of analysis. The results show that hybrid PV–biodiesel system comprising 25 kW PV array, 8 kW biodiesel generator-1, 20 kW biodiesel generator-2, 10 kW inverter and 10 kW rectifier will supply power to the institute avoiding addition of 27.744 tons of CO2 in atmosphere and save 55,080 kg of coal per year with improvement in reliability from 93.15 to 100%.  相似文献   

18.
Biomass fuels have attracted an increase in interest due to the alarming rise in global greenhouse gases and the rapid rise of petroleum prices. Energy security on a sustainable basis can come only with the responsible use of home-sourced resources and not from imported fossil fuels such as coal or crude petroleum products. Partial combustion of biomass in the downdraft gasifier generates producer gas that can be used as the sole fuel or as a supplementary fuel for internal combustion engines. A dual fuel mode of operation, in which producer gas is used as a supplementary inducted fuel along with injected pilot fuels of Honge or Jatropha biodiesels, can be a promising alternative to diesel only usage. Two different carburettors were designed and fabricated to facilitate gas entry at 45° and 90° to the engine cylinder. The engine was experimentally optimised using Honge or Jatropha biodiesels–producer gas combinations with respect to maximum pilot fuel savings in the dual fuel mode operation, optimum air and gas mixing with different tested carburettors. The performance, combustion and emission characteristics of these dual fuel combinations were compared at different load conditions. The results showed that biodiesels of Honge or Jatropha oils–Producer gas combinations with carburettor of 90° gas entry resulted in better performance.  相似文献   

19.
Control of particulate emissions from pulverized coal fired steam generators is becoming a significant factor in the siting and public acceptability of large coal burning power plants. The particulate emission limit established by the EPA for new coal fired boilers is 0.03 lb/106 Btu (13 ng/J) Possibly more restrictive than this is the state of New Mexico's particulate regulation which calls for no more than 0.05 lb/106 Btu (22 ng/J) total, and no more than 0.02 lb/106 Btu (9 ng/J) less than 2 microns in diameter. This paper will evaluate the effect of these stringent limitations on the technical feasibility and economics of dry particulate removal. Electrostatic precipitators have been the dominant particulate collection device in the electric utility industry for many years because of their low capital and operating cost. However, increasingly stringent emission standards have led to substantially higher costs for precipitators. These costs have increased sufficiently for fabric filtration to become a competitive alternative in achieving cost effective control. This paper will compare the economics and performance of fabric filtration with respect to conventional electrostatic precipitators. The paper will also address the preliminary evaluation procedures that should be followed in order to select the appropriate device for new or existing coal-fired boilers.  相似文献   

20.
A high volume aerosol sampler ("Grey Owl") has been designed and developed at the Radiation Protection Bureau, Health Canada. Its design guidance is based on the need for a low operational cost and reliable sampler to provide daily aerosol monitoring samples that can be used as reference samples for radiological studies. It has been developed to provide a constant air flow rate at low pressure drops (∼3 kPa for a day sampling) with variations of less than ±1% of the full scale flow rate. Its energy consumption is only about 1.5 kW for a filter sampling over 22,000 standard cubic meter of air. It has been demonstrated in this Fukushima nuclear accident related aerosol radioactivity monitoring study at Sidney station, B.C. that the sampler is robust and reliable. The results provided by the new monitoring system have been used to support decision-making in Canada during an emergency response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号