首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concentration of total arsenic and five different arsenic species [As(III), As(V), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB)], were measured in the muscle, liver and gastrointestinal tract (GIT) of five different fish species [lake whitefish (Coregonus clupeaformis), walleye (Stizostedion vitreum), northern pike (Esox lucius), white sucker (Catostomus commersoni) and longnose sucker (Catostomus catostomus)] from Back Bay, Great Slave Lake, near the city of Yellowknife, NT, Canada. The total concentration (dry weight) of arsenic in muscle ranged from 0.57 to 1.15 mg/kg, in the liver from 0.42 to 2.52 mg/kg and in the GIT from 1.48 to 8.92 mg/kg. Among fish species, C. commersoni had significantly higher total arsenic concentrations in the GIT than S. vitreum, E. lucius and C. clupeaformis, and higher total arsenic concentrations in the liver than C. clupeaformis. The mean concentration of As(III) and As(V) in the muscle of all fish ranged from < or =0.01 to 0.05 mg/kg and < or =0.01 to 0.02 mg/kg, respectively, and together comprised < or =7.5% of the total arsenic measured in muscle. The concentrations of MMA were below detection in the muscle of all five fish species. However, AsB and DMA were measured in all fish species and nearly all fish tissues. The concentrations of AsB ranged from 0.01 to 0.13 mg/kg and the concentrations of DMA ranged from <0.02 to 0.45 mg/kg. The majority (>50%) of organic arsenic in almost all of the tissues from fish caught in Back Bay was not directly identified. Evidence from the literature suggests that most of these other organic arsenic species were likely trimethylated arsenic compounds, however, further analytical work would need to be performed to verify this hypothesis.  相似文献   

2.
Suitable techniques have been developed for the extraction of arsenic species in a variety of biological and environmental samples from the Pak Pa-Nang Estuary and catchment, located in Southern Thailand, and for their determination using HPLC directly coupled with ICP-MS. The estuary catchment comprises a tin mining area and inhabitants of the region can suffer from various stages of arsenic poisoning. The important arsenic species, AsB, DMA, MMA, and inorganic arsenic (As III and V) have been determined in fish and crustacean samples to provide toxicological information on those fauna which contribute to the local diet. A Hamilton PRP-X100 anion-exchange HPLC system employing a step elution has been used successfully to achieve separation of the arsenic species. A nitric acid microwave digestion procedure, followed by carrier gas nitrogen addition- (N2)-ICP-MS analysis was used to measure total arsenic in sample digests and extracts. The arsenic speciation of the biological samples was preserved using a Trypsin enzymatic extraction procedure. Extraction efficiencies were high, with values of 82-102%(As) for fish and crustacean samples. Validation for these procedures was carried out using certified reference materials. Fish and crustacean samples from the Pak Pa-Nang Estuary showed a range for total arsenic concentration, up to 17 microg g(-1) dry mass. The major species of arsenic in all fauna samples taken was AsB, together with smaller quantities of DMA and, more importantly, inorganic As. For sediment samples, arsenic species were determined following phosphoric acid (1 M H3PO4) extraction in an open focused microwave system. A phosphate-based eluant, pH 6-7.5, with anion exchange HPLC coupled with ICP-MS was used for separation and detection of AsIII, AsV, MMA and DMA. The optimum conditions, identified using an estuarine sediment reference material (LGC), were achieved using 45 W power and a 20 minute heating period for extraction of 0.5 g sediment. The stability and recovery of arsenic species under the extraction conditions were also determined by a spiking procedure which included the estuarine sediment reference material. The results show good stability for all species after extraction with a variability of less than 10%. Total concentrations of arsenic in the sediments from the Pak Pa-Nang river catchment and the estuary covered the ranges 7-269 microg g(-1)and 4-20 [micro sign]g g(-1)(dry weight), respectively. AsV was the major species found in all the sediment samples with smaller quantities of AsIII. The presence of the more toxic inorganic forms of arsenic in both sediments and biota samples has implications for human health, particularly as they are readily 'available'.  相似文献   

3.
Various solid phase extraction (SPE) cartridges were investigated for speciation of arsenite [As(III)], arsenate [As(v)], monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Cartridges containing different types of sorbent materials were tested for arsenic retention and elution characteristics. Alumina cartridges were found to completely retain all the four target arsenic species, and are suitable for removal and preconcentration purposes. For speciation analysis, different arsenic species were separated on the basis of their selective retention on and elution from specific cartridges. DMA was retained on a resin-based strong cation exchange cartridge and eluted with 1.0 M HCl. MMA and As(v) were both retained on a silica-based strong anion exchange cartridge and sequentially eluted with 60 mM acetic acid (for MMA) and 1.0 M HCl [for As(v)]. As(III) was not retained on either cartridge and remained in solution. Arsenic species in solution and those eluted from the cartridges were subsequently quantified by using flow injection with hydride generation atomic fluorescence spectrometry (FI-HGAFS) and hydride generation atomic absorption spectrometry (FI-HGAAS). A detection limit of 0.05 microg L(-1) arsenic in water sample was achieved using HGAFS. An application of the method was demonstrated at a drinking water treatment facility. As(III) and As(v) species were determined in water at various stages of treatment. The method is suitable for routine determination of trace levels of arsenic in drinking water to comply with more stringent environmental regulations.  相似文献   

4.
Millions of people in some of the poorest regions of the world are exposed to high levels of arsenic through drinking contaminated water. It has been reported that development of cancer caused by arsenic exposure in such populations is dependent on dietary and nutritional factors which can modulate arsenic metabolism. Many people in arsenic exposed regions of Bangladesh and India practice fasting for at least one month every year when they refrain from consumption of food and fluid during daylight hours. How such practices may modulate arsenic metabolism has not been previously investigated. This study investigated this issue by determining total arsenic and its species in urine samples from a group of 29 unexposed volunteers at the beginning of the fasting and at the end of approximately 12 h of fasting period. Inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled with ICP-MS was used to measure the total arsenic and arsenic speciation in the urine samples, respectively. The mean total levels of arsenic at the beginning of fasting (18.3 microg g(-1) creatinine) and at the end of approximately 12 h of fasting (17.7 microg g(-1) creatinine) did not differ significantly (p > 0.05). However, the percentages of urinary arsenic as the methylated arsenic species methylarsonate (MA) were found to be significantly different (p < 0.05) and this species was observed more frequently at the end of fasting, although its overall concentration was similar. There were no significant differences (p > 0.05) in both the concentrations and percentages of other urinary arsenic species detected, namely arsenobetaine (AB) and dimethylarsinate (DMA). Arsenite (As(III)) and arsenate (As(V)) were also analyzed, but were not detected. We conclude that fasting for a period of 12 h results in a significant increase in the percentage of urinary arsenic as MA, and its frequency of detection in the volunteers at the end of the fasting period is almost nine fold higher. This suggests that metabolism of arsenic is altered by fasting.  相似文献   

5.
Three treatment media, used for the removal of arsenic from drinking water, were sequentially extracted using 10 mM MgCl2(pH 8), 10 mM NaH2PO4(pH 7) followed by 10 mM (NH4)2C2O4(pH 3). The media were extracted using an on-line automated continuous extraction system which allowed the arsenic in each of the extraction fluids to be speciated on-line using IC-ICP-MS. The 10 mM MgCl2 preferentially extracted As(III) from each of the media. The percentage of the arsenic extracted by the MgCl2, relative to a HNO3/H2O2 digestion of the media, ranged from 0.1-2.3% for the three solids. The next sequential extraction fluid, 10 mM NaH2PO4, extracted some of the residual As(III) remaining on each of the media but the predominant species extracted was As(V). The 10 mM NaH2PO4 extracted 15.3 to 42.8% of the total arsenic relative to a total digested concentration for each of the media. The As(III) and As(V) stability studies conducted in these two extraction fluids indicated that conversion between As(III) and As(V) was not significant for the short extraction fluid sample contact time associated with the on-line continuous flow extraction cell. Finally, the 10 mM (NH4)2C2O4 extraction fluid was utilized in an off-line analysis mode because the Fe and As concentrations extracted from the media were not compatible with direct ICP-MS detection. The (NH4)2C2O4 extracted 2.9-29% As(III) for all three media and caused an oxidation of As(III) to As(V) during the extraction period for one of the three media. The sum of the arsenic from each of the three extraction fluids represented 92%, 44% and 53% of the available total arsenic for the three media, respectively. The speciation results for each media were obtained by adding all the speciation results from all three extraction fluids together and the resulting distribution of As(III)/As(V) compared well with the speciation results obtained via XANES.  相似文献   

6.
The relationship between the total arsenic concentration and the chemical speciation of arsenic in two species of earthworm (Lumbricus rubellus and Dendrodrilus rubidus) in relation to the host soil, was investigated for 13 sites of varying arsenic content, including a background level garden soil and a former mine site at the Devon Great Consols, UK. Earthworms were collected with the host soil (As soil concentration range 16-12, 466 mg kg(-1) dry weight) and measured for their total arsenic (concentration range 7-595 mg kg(-1) dry weight) using inductively coupled plasma mass spectrometry (ICP-MS). A methanol-water mixture was used to extract arsenic species from the earthworms prior to determination of the individual arsenic species by a combination of anion and cation exchange high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A gradient elution anion exchange method is presented whereby nine arsenic species could be measured in one sample injection. Arsenic species were identified by comparison of retention times and sample spiking with known standards and a fully characterised seaweed extract. Arsenic was generally present in the earthworm as arsenate (As(V)) or arsenite (As(III)) and arsenobetaine (AB). Methylarsonate (MA), dimethylarsinate (DMA) and three arsenosugars (glycerol, phosphate, sulfate) were present as minor constituents. These results are discussed in relation to the mechanisms for coping with exposure to soil bound arsenic.  相似文献   

7.
The content of total arsenic, the inorganic forms: arsenite (As(III)) and arsenate (As(V)), the methylated forms: monomethylarsonic acid and dimethylarsinic acid (DMA), trimethylarsenic oxide, tetramethylarsenonium ion and arsenobetaine was measured in 95 sediment samples and 11 pore water samples from the Baltic Sea near the island of Bornholm at depths of up to 100 m. As(III+V) and DMA were detected in the sediment and As(III+V) was detected in the sediment pore water. Average total As concentration of 10.6?±?7.4 mg/kg dry matter (DM) in the sediment corresponds to previously reported values in the Baltic Sea and other parts of the world. Existing data for on-site measurements of sorption coefficients (Kd) of arsenicals in marine and freshwater sediments show large variability from <1 to >1,000 L/kg. In this work, calculated sorption coefficients (Kd and Koc) for As(III+V) showed significant correlation with depth, dissolved oxygen (DO), salinity and sediment classification; for depths <70 m, salinity <11 %, DO >9 mg/L and sand/silt/clay sediments the Kd was 118?±?76 L/kg DM and for depths >70 m, salinity >11 %, DO?<?9 mg/L and muddy sediments the Kd was 513?±?233 L/kg DM. The authors recommend using the found Kd value for arsenic in marine sediments when conditions are similar to the Baltic Sea. At locations with significant anthropogenic point sources or where the local geology contains volcanic rock and sulphide mineral deposits, there may be significantly elevated arsenic concentrations, and it is recommended to determine on-site Kd values.  相似文献   

8.
Interests in the determination of different arsenic species in natural waters is caused by the fact that toxic effects of arsenic are connected with its chemical forms and oxidation states. In determinations of water samples inorganic arsenate (As(III), As(V)), methylated metabolities (MMAA, DMAA) and other organic forms such as AsB, AsC, arsenosugars or arsenic containing lipids have the most importance. This article provides information about occurrence of the dominant arsenic forms in various water environments. The main factors controlling arsenic speciation in water are described. The quantification of species is difficult because the concentrations of different forms in water samples are relatively lowcompared to the detection limits of the available analytical techniques. Several hyphenated methods used in arsenic speciation analysis are described. Specific advantages and disadvantages of methods can define their application for a particular sample analysis. Insufficient selectivity and sensitivity of arsenic speciation methods cause searching for a new or modifications already existing techniques. Some aspects of improvement and modifications of the methods are highlighted.  相似文献   

9.
The purpose of this paper was to use derivative anodic stripping chronopotentiometry (dASCP) as a sensitive and accurate technique, to determine the concentrations of dissolved As (III) and As (V) in coastal seawater samples from the Straits of Messina, the Ionian and the Tyrrhenian seas, and to investigate the relationship between the anthropogenic activities on the coastal areas and the concentration of dissolved inorganic arsenic in seawaters. The obtained data indicated that As (V) was the most abundant species, with concentration ranging from 26.7 to 307 nM, whereas As (III) levels were lower than 48 nM in all the samples. In particular, As (III) and As (V) levels significantly decreased from high to low anthropogenic activities zones (p < 0.00001, ANOVA), with the reference samples, from a wildlife reserve, showing the lowest values. Furthermore it was observed that human activities influenced inorganic arsenic speciation, since the zones that received high human input presented the highest As(V)/As (III) ratio.  相似文献   

10.
Inorganic arsenic is a potent human carcinogen and toxicant which people are exposed to mainly via drinking water and food. The objective of the present study was to assess current exposure to arsenic via drinking water in three European countries. For this purpose, 520 individuals from four Hungarian, two Slovakian and two Romanian countries were investigated by measuring inorganic arsenic and methylated arsenic metabolites in urine by high performance liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry. Arsenic in drinking water was determined by atomic absorption spectrometry. Significantly higher concentrations of arsenic were found in both the water and the urine samples from the Hungarian counties (median: 11 and 15 microg dm(-3), respectively; p < 0.001) than from the Slovakian (median: 0.94 and 4.5 microg dm(-3), respectively) and Romanian (median: 0.70 and 2.1 microg dm(-3), respectively) counties. A significant correlation was seen between arsenic in water and arsenic in urine (R(2)= 0.46). At low water arsenic concentrations, the relative amount of dimethylarsinic acid (DMA) in urine was increased, indicating exposure via food. Also, high body mass index was associated with higher concentrations of arsenic in urine (p= 0.03), mostly in the form of DMA. Smokers had significantly higher urinary arsenic concentrations than non-smokers (p= 0.03). In conclusion, elevated arsenic exposure via drinking water was prevalent in some of the counties. Exposure to arsenic from food, mainly as DMA, and cigarette smoke, mainly as inorganic arsenic, are major determinants of arsenic exposure at very low concentrations of arsenic in drinking water.  相似文献   

11.
Arsenic speciation was determined in Lumbricus rubellus Hoffmeister from arsenic-contaminated mine spoil sites and an uncontaminated site using HPLC-MS, HPLC-ICP-MS and XAS. It was previously demonstrated that L. rubellus from mine soils were more arsenate resistant than from the uncontaminated site and we wished to investigate if arsenic speciation had a role in this resistance. Earthworms from contaminated sites had considerably higher arsenic body burdens (maximum 1,358 mg As kg-1) compared to the uncontaminated site (maximum 13 mg As kg-1). The only organo-arsenic species found in methanol/water extracts for all earthworm populations was arsenobetaine, quantified using both HPLC-MS and HPLC-ICP-MS. Arsenobetaine concentrations were high in L. rubellus from the uncontaminated site when concentrations were expressed as a percentage of the total arsenic burden (23% mean), but earthworms from the contaminated sites with relatively low arsenic burdens also had these high levels of arsenobetaine (17% mean). As arsenic body burden increased, the percentage of arsenobetaine present decreased in a dose dependent manner, although its absolute concentration rose with increasing arsenic burden. The origin of this arsenobetaine is discussed. XAS analysis of arsenic mine L. rubellus showed that arsenic was primarily present as As(III) co-ordinated with sulfur (30% approx.), with some As(v) with oxygen (5%). Spectra for As(III) complexed with glutathione gave a very good fit to the spectra obtained for the earthworms, suggesting a role for sulfur co-ordination in arsenic metabolism at higher earthworm arsenic burdens. It is also possible that the disintegration of As(III)-S complexes may have taken place due to (a) processing of the sample, (b) storage of the extract or (c) HPLC anion exchange. HPLC-ICP-MS analysis of methanol extracts showed the presence of arsenite and arsenate, suggesting that these sulfur complexes disintegrate on extraction. The role of arsenic speciation in the resistance of L. rubellus to arsenate is considered.  相似文献   

12.
We examined the daily inorganic arsenic (i-As) intake from drinking water and rice in 45 households (75 individuals) in the An Giang province, Southern Vietnam. The daily i-As intake ranged from 28-102 μg d(-1), equivalent to the daily dose of 0.6-1.9 μg d(-1) kg((body wt))(-1). Increased As concentrations were observed in human hair in the study location. Approximately 67% (n = 44), 42% (n = 28), and 15% (n = 10) of the hair samples had As levels exceeding 1, 3, and 10 μg g(-1), respectively. The total As concentrations in female and male hair correlated well with the total daily i-As intake. Measurement of As concentrations in the hair of people who were consuming or had previously consumed As from contaminated sources may help predict the onset of negative health effects. We suggested an application of the Bayes's theorem to calculate the probability that an individual in a population will acquire a negative health effect, given that the concentration of arsenic in the subject's hair has been determined.  相似文献   

13.
Arsenic concentrations in hair and urine, and urinary levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, were examined for inhabitants of the Mekong Basin in Kratie Province, Cambodia. Also, the arsenic levels of tube-well water were determined. Total arsenic concentrations in tube-well water ranged from <1 to 886 microg L(-1), and 44.8% of these exceeded the WHO drinking water guideline of 10 microg L(-1). Elevated levels of arsenic were observed in the human hair and urine, and also a significant positive correlation was observed between the concentrations in hair and urine. These results suggest that the inhabitants are chronically exposed to arsenic through drinking the tube-well water. Levels of urinary 8-OHdG were higher for the subjects with higher arsenic levels in hair and urine, suggesting that induction of oxidative DNA damage was caused by chronic exposure to arsenic in tube-well water for the inhabitants in Kratie Province. To our knowledge, this is the first report on the oxidative DNA damage caused by chronic exposure to arsenic in groundwater for the inhabitants in Cambodia.  相似文献   

14.
The impact of arsenic pollution in waters from the surroundings of three abandoned Hg mines in Northern Spain, as well as reaching the Caudal River, was evaluated. For assessing the factors controlling arsenic release, an extensive study based on the physicochemical characterization and multivariate statistical analysis of waters upstream and downstream each mine site was performed. Waters downstream of the La Soterra?a mine present the highest arsenic concentrations, up to 38.8 mg L(-1), coming mainly from the solubilisation of calcium, magnesium and strontium arsenates at a pH close to neutral. Although arsenic concentrations downstream of La Pe?a are markedly lower, these values remain too high, indicating that the encapsulation carried out in this spoil heap is insufficient. In addition, the high water flow in this point involves an extremely high input of arsenic to the surroundings (0.3 g s(-1)). Waters close to tailings from Los Rueldos suffer from acid mine drainage, provoking an important solubilisation of arsenic and heavy metals, a situation which is rapidly softened with distance. The study of arsenic speciation reveals the omnipresence of As(v) in waters from the three mines, whereas in La Pe?a low amounts of As(iii) were also detected. Different preservation methods for As speciation were compared, such as the addition of HCl, EDTA and the storage of samples without any additive, and no alteration of samples in any case up to nine months after the collection was observed. A study of seasonal variations of As and the main parameters affecting its concentration and speciation was completed throughout a year, showing no remarkable dependency with rainfall for any studied variable.  相似文献   

15.
Investigations of the existing chemical forms and the concentrations of arsenic (As), selenium (Se) and antimony (Sb) in samples of fly ash obtained from six coal-fired power stations in various countries were carried out. The concentration of As was found to vary from 5.4 to 22.3 mg kg(-1), and the most common mode of occurrence of As in the fly ashes is in association with carbonates or Fe-Mn oxides. The concentrations of Se and Sb ranged from 2.3-5.2 and 1.0-3.9 mg kg(-1), respectively. The dominant chemical forms of Se and Sb in the fly ashes were as extractable species. Also, water-soluble As, Se and Sb in the fly ashes were extracted, and the chemical species of As, Se and Sb in the extract determined using HPLC-ICP-MS. This was done as the potential release of soluble As, Se and Sb through leaching of fly ash is of environmental concern. The most abundant form of As in the extract was the low toxicity As(V). The main species of Se was Se(IV), although it was found that the ratio of Se(VI) to Se(IV) in acidic fly ashes is higher than in alkaline fly ash samples. Antimony was mostly present as Sb(III).  相似文献   

16.
采用高效液相色谱-氢化物发生-原子荧光光谱联用技术测定水中亚砷酸盐[As(Ⅲ)]、二甲基砷(DMA)、一甲基砷(MMA)和砷酸盐[As(V)]等4种形态砷,以磷酸盐缓冲溶液为流动相,硼氢化钾为还原剂,优化了仪器主要技术参数.As(Ⅲ)、DMA、MMA和As(V)在7 min内实现了良好的基线分离,在5.00 μg/L~...  相似文献   

17.
Rice is elevated in arsenic (As) compared to other staple grains. The Bangladeshi community living in the United Kingdom (UK) has a ca. 30-fold higher consumption of rice than white Caucasians. In order to assess the impact of this difference in rice consumption, urinary arsenicals of 49 volunteers in the UK (Bangladeshi n = 37; white Caucasians n = 12) were monitored along with dietary habits. Total urinary arsenic (As(t)) and speciation analysis for dimethylarsinic acid (DMA), monomethylarsonic acid (MA) and inorganic arsenic (iAs) was conducted. Although no significant difference was found for As(t) (median: Bangladeshis 28.4 μg L(-1)) and white Caucasians (20.6 μg L(-1)), the sum of medians of DMA, MA and iAs for the Bangladeshi group was found to be over 3-fold higher (17.9 μg L(-1)) than for the Caucasians (3.50 μg L(-1)). Urinary DMA was significantly higher (p < 0.001) in the UK Bangladeshis (median: 16.9 μg DMA L(-1)) than in the white Caucasians (3.16 μg DMA L(-1)) as well as iAs (p < 0.001) with a median of 0.630 μg iAs L(-1) for Bangladeshi and 0.250 μg iAs L(-1) for Caucasians. Cationic compounds were significantly lower in the Bangladeshis (2.93 μg L(-1)) than in Caucasians (14.9 μg L(-1)). The higher DMA and iAs levels in the Bangladeshis are mainly the result of higher rice consumption: arsenic is speciated in rice as both iAs and DMA, and iAs can be metabolized, through MA, to DMA by humans. This study shows that a higher dietary intake of DMA alters the DMA/MA ratio in urine. Consequently, DMA/MA ratio as an indication of methylation capacity in populations consuming large quantities of rice should be applied with caution since variation in the quantity and type of rice eaten may alter this ratio.  相似文献   

18.
In contrast to the large body of data on naturally-occurring arsenic compounds in marine organisms, relatively little is known about arsenic speciation in freshwater biota. We report an investigation using HPLC-ICPMS into the arsenic compounds in five species of freshwater mussels collected from five sites from the Danube in Hungary. Total arsenic concentrations in the mussels ranged from 3.8-12.8 mg As kg(-1). The arsenic speciation patterns were broadly similar for mussels representing each of the five species and five sites, but quite different from those reported for marine mussels. The major extractable arsenicals were two oxo arsenosugars (glycerol sugar and phosphate sugar), and their thio analogues (thio glycerol sugar and thio phosphate sugar). Arsenobetaine, usually the major arsenical in marine organisms, was not a significant compound in the freshwater mussels and was detected in only three of the 11 samples. This is the first report of thio arsenosugars in freshwater biota and suggests that these compounds may be common and widespread naturally-occurring arsenicals.  相似文献   

19.
Total As content and the As species distribution in water and sediments from the Kwabrafo stream, a major water body draining the Obuasi gold mining community in southwestern Ghana, have been investigated. Total As content was determined by instrumental neutron activation analysis (INAA). Ion-pair reverse phase high-performance liquid chromatography-neutron activation analysis (HPLC-NAA) was used for speciation of As species. Solid phase extraction with phosphate buffer was used to extract soluble As species from lyophilized sediment. The mass balance after phosphate extraction of soluble As species in sediment varied from 89 to 96 %. Compositionally appropriate reference material International Atomic Energy Agency (IAEA)-Lake Sediment (SL)-1 was used to check the validity of INAA method for total As determination. The measured values are in good agreement with the IAEA recommended value and also within the 95 % confidence interval. The accuracy of the measurement in terms of relative deviation from the IAEA recommended value was ±0.83 %. “In-house” prepared As(III) and As(V) standards were used to validate the HPLC-INAA method used for the As species determination. Total As concentration in the water samples ranged from 1.15 to 9.20 mg/L. As(III) species in water varied from 0.13 to 0.7 mg/L, while As(V) species varied from 0.79 to 3.85 mg/L. Total As content in sediment ranged from 2,134 to 3,596 mg/kg dry mass. The levels of As(III) and As(V) species in the sediment ranges from 138 to 506 mg/kg dry mass and 156 to 385 mg/kg dry mass, respectively.  相似文献   

20.
The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号