首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7-cm-long columns of intact sediment or repacked sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of columns to examine the effect of cell morphology and cell surface properties on bacterial transport. The effects of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also investigated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide-coated columns, but only in the suboxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide-coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect appears to be profound for weakly and strongly charged hydrophilic bacteria and may contribute to differences in observations between laboratory experiments versus field-scale investigations particularly if the groundwater pH remains subneutral and Fe oxyhydroxide phases exist. These observation validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.  相似文献   

2.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   

3.
The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life <1day). Lag-times for the start of degradation of these compounds ranged from <15 to 30days. While iodipamide was persistent under aerobic conditions, artificial reductive geochemical conditions promoted via the addition of ethanol, resulted in rapid degradation (half life <1days). Pharmaceuticals (carbamazepine and oxazepam) and disinfection by-products (NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.  相似文献   

4.
5.
Transport and degradation of ethanol in groundwater   总被引:2,自引:0,他引:2  
Ethanol is rapidly replacing methyl tert-butyl ether (MtBE), the primary fuel oxygenate in the US, and ethanol releases from spills and leaky underground storage tanks (LUSTs) are anticipated. Ethanol has received little attention as a potential groundwater contaminant. This study investigates the fate and transport of ethanol under transient conditions in a sand and gravel aquifer. A pulse containing approximately 220 mg L-1 ethanol and 16 mg L-1 bromide was injected into the shallow sand and gravel aquifer and monitored to estimate its persistence and transport. The plume was monitored for 2.5 months using downgradient multilevel samplers (MLSs). Values for ethanol retardation were measured from ethanol and bromide breakthrough data and compared to estimates using published Koc values for low carbon aquifer sediments (foc=10 microg C g-1 sediment). Ethanol transport was not retarded (R=0.99). A 3-dimensional model reasonably simulated bromide and ethanol breakthrough curves. An average first-order decay constant was estimated to be 0.32 d-1 (t1/2=2.2 d). At the second fence, 75% of the injected bromide and less than 3% of ethanol remained in the plume. Monitored terminal electron acceptor concentrations demonstrated that the majority of the ethanol was transformed by anaerobic processes other than denitrification and sulfate reduction.  相似文献   

6.
This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O2). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L?1) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl?) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl?. To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl? and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.  相似文献   

7.
A natural groundwater system modified by pollutant phenols and agricultural nitrate has been modelled in the laboratory by a series of sacrificial microcosm experiments. Samples of aquifer sediment and groundwater from the margin of the phenol plume were used to inoculate anaerobic microcosms enriched in nitrate and pollutant phenols. Rapid degradation of phenol and p-cresol was observed over a 35-day period leading to the generation of inorganic carbon and a number of transient intermediates. O-cresol proved to be recalcitrant on the experimental time-scale. A mass balance calculation shows that, during degradation, carbon was conserved in the aqueous phase. Groundwater-sediment interactions were monitored using carbon stable isotope data. A mass balance for solution TIC indicates thatp-cresol degradation stimulated the dissolution of sedimentary carbonate phases due to the formation of carbonic acid. Compound-specific carbon isotope analysis (GC-IRMS) was used to search for 13C enrichment in residual p-cresol. A slight enrichment trend (epsilon = -2.5/1000) was tentatively identified. The potential of this fractionation effect for obtaining in situ degradation rates is discussed. Results from the microcosm experiments help to explain the observed distribution of nitrate and phenols within the polluted aquifer.  相似文献   

8.
Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak within a few decades or continue to increase until after 2050 depends on the dominant land use functions in the areas, their hydrology and geochemical build-up.  相似文献   

9.
Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.  相似文献   

10.
The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272microgm(-2)d(-1) MCB and 71microgm(-2)d(-1) DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream.  相似文献   

11.
Groundwater contamination by nitrate was investigated in an agricultural area in southern Quebec, Canada, where a municipal well is the local source of drinking water. A network of 38 piezometers was installed within the capture zone of the municipal well to monitor water table levels and nitrate concentrations in the aquifer. Nitrate concentrations were also measured in the municipal well. A Water flow and Nitrate transport Global Model (WNGM) was developed to simulate the impact of agricultural activities on nitrate concentrations in both the aquifer and municipal well. The WNGM first uses the Agriflux model to simulate vertical water and nitrate fluxes below the root zone for each of the seventy agricultural fields located within the capture zone of the municipal well. The WNGM then uses the HydroGeoSphere model to simulate three-dimensional variably-saturated groundwater flow and nitrate transport in the aquifer using water and nitrate fluxes computed with the Agriflux model as the top boundary conditions. The WNGM model was calibrated by reproducing water levels measured from 2005 to 2007 in the network of piezometers and nitrate concentrations measured in the municipal well from 1997 to 2007. The nitrate concentrations measured in the network of piezometers, however, showed greater variability than in the municipal well and could not be reproduced by the calibrated model. After calibration, the model was validated by successfully reproducing the decrease of nitrate concentrations observed in the municipal well in 2006 and 2007. Although it cannot predict nitrate concentrations in individual piezometers, the calibrated and validated WNGM can be used to assess the impact of changes in agricultural practices on global nitrate concentrations in the aquifer and in the municipal well.  相似文献   

12.
North America's fifth most populated municipality--the Greater Toronto Area (GTA)--is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.  相似文献   

13.
A large-scale experiment was conducted to investigate the transport of trichloroethylene (TCE) vapors in the unsaturated zone and to determine the mass transfer to the groundwater and the atmosphere. The experiment involved injection of 5 1 of TCE in the unsaturated zone under controlled conditions, with multidepth sampling of gas and water through the unsaturated zone and across the capillary zone into underlying groundwater. The mass transfer of TCE vapors from the vadose zone to the atmosphere was quantified using a vertical flux chamber. A special soil water sampler was used to monitor transport across the capillary fringe. Experimental data indicated that TCE in the unsaturated zone was mainly transported to the atmosphere and this exchange reduced significantly the potential for groundwater pollution. The maximum measured TCE flux to the atmosphere was about 3 g/m(2)/day. Observed and calculated fluxes based on vertical TCE vapor concentration gradients and Fick's law were in good agreement. This confirms that TCE vapor transport under the experimental conditions was governed essentially by molecular diffusion. TCE vapors also caused a lower, but significant contamination of the underlying groundwater by dispersion across the capillary fringe with a corresponding maximum flux of about 0.1 g/m(2)/day. This mass transfer to groundwater is partly uncertain due to an inadvertent entry of some nonaqueous phase liquid (NAPL) from the source area into the saturated zone. Application of an analytical solution to estimate the TCE flux from the unsaturated zone to the groundwater indicated that this phenomenon is not only influenced by molecular diffusion but also by vertical dispersion. The mass balance indicates that, under the given experimental conditions (e.g. proximity of the source emplacement relative to the soil surface, relatively high permeable porous medium), nearly 95% of the initial TCE mass was transferred to the atmosphere.  相似文献   

14.
Zhang Y  Meng W  Guo C  Xu J  Yu T  Fan W  Li L 《Chemosphere》2012,88(11):1292-1299
Perfluorinated compounds (PFCs) have received much attention on their distribution in various matrices including water bodies, precipitations, sediment and biota in different areas globally, however, little attention has been paid to their occurrence and distribution in urban lakes. In this study, water and sediment samples collected from 26 sites in Dianchi Lake, a plateau urban lake in the southwestern part of China were analyzed via high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for ten analytes involving nine perfluoroalkyl carboxylic acids (PFOAs) and perfluorooctanesulfonate (PFOS). Total levels of PFCs were 30.98 ± 32.19 ng L(-1) in water and 0.95 ± 0.63 ng g(-1) in sediment. In water samples PFOA was the dominant PFC contaminant, with concentrations ranging from 3.41 to 35.44 ng L(-1), while in sediments PFOS was the main PFC contaminant at levels from 0.07-0.83 ng g(-1) dry weight. Field-based sediment water distribution coefficients (K(D)) were calculated and corrected for organic carbon content (K(oc)), which reduced variability among samples. The log K(oc) ranged from 2.54 to 3.57 for C8-C12 perfluorinated carboxylic acids, increasing by 0.1-0.4 log units with each additional CF2 moiety. The log K(oc) of PFOS was 3.35 ± 0.32. Magnitudes and trends in log K(D) or log K(oc) appeared to agree well with previously published laboratory data. Results showed that different PFC composition profiles were observed for samples from the lake water and sediments, indicating the presence of dissimilar characteristics of the PFCs compounds, which is important for PFC fate modeling and risk assessment.  相似文献   

15.
New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers–Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.  相似文献   

16.
The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak concentration levels at the same location remain much higher than the United States Environment Protection Agency (US-EPA) drinking water limits. Although groundwater quality was found to improve more rapidly for the equilibrium dissolution model, it is also shown that dissolution models that promote rapid DNAPL disappearance produce greater prediction uncertainty in the aqueous-phase flux reduction.  相似文献   

17.
A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes.  相似文献   

18.
A field investigation of a TCE plume in a surficial sand aquifer shows that groundwater-surface water interactions strongly influence apparent plume attenuation. At the site, a former industrial facility in Connecticut, depth-discrete monitoring along three cross-sections (transects) perpendicular to groundwater flow shows a persistent VOC plume extending 700 m from the DNAPL source zone to a mid-size river. Maximum TCE concentrations along a transect 280 m from the source were in the 1000s of microg/L with minimal degradation products. Beyond this, the land surface drops abruptly to a lower terrace where a shallow pond and small streams occur. Two transects along the lower terrace, one midway between the facility and river just downgradient of the pond and one along the edge of the river, give the appearance that the plume has strongly attenuated. At the river, maximum TCE concentrations in the 10s of microg/L and similar levels of its degradation product cis-DCE show direct plume discharge from groundwater to the river is negligible. Although degradation plays a role in the strong plume attenuation, the major attenuation factor is partial groundwater plume discharge to surface water (i.e. the pond and small streams), where some mass loss occurs via water-air exchange. Groundwater and stream mass discharge estimates show that more than half of the plume mass discharge crossing the first transect, before surface water interactions occur, reaches the river directly via streamflow, although river concentrations were below detection due to dilution. This study shows that groundwater and surface water concentration measurements together provide greater confidence in identifying and quantifying natural attenuation processes at this site, rather than groundwater measurements alone.  相似文献   

19.
Microbial activities are significantly influenced by temperature. This study investigated the effects of temperature on the capture and destruction of bacteria from urban stormwater runoff in bioretention media using 2-year field evaluations coupled with controlled laboratory column studies. Field data from two bioretention cells show that the concentration of indicator bacteria (fecal coliforms and Escherichia coli) was reduced during most storm events, and that the probability of meeting specific water quality criteria in the discharge was increased. Indicator bacteria concentration in the input flow typically increased with higher daily temperature. Although bacterial removal efficiency was independent of temperature in the field and laboratory, column tests showed that bacterial decay coefficients in conventional bioretention media (CBM) increase exponentially with elevated temperature. Increases in levels of protozoa and heterotrophic bacteria associated with increasing temperature appear to contribute to faster die-off of trapped E. coli in CBM via predation and competition.  相似文献   

20.
- DOI: http://dx.doi/10.1065/espr2006.01.016 Background and Goal Agricultural practices can affect the quality of aquifers given that they are often located in cropped areas, so significant amounts of pesticides can be found in the water. In particular, triazine herbicides are always carefully checked by the official monitoring systems. The goal of this study was to find the mean concentration of terbuthylazine in an Italian aquifer and to set up a mass balance of this compound. Methods Terbuthylazine concentrations in the aquifer were measured in various check-wells during 1998–2004, and the value of censored data were estimated using a Gompertz inverse in order to evaluate the overall mean concentration. The total terbuthylazine load in the recharge area was calculated on the basis of surveys of cropped land and the main weed control techniques applied in the area. Data on aquifer water balance were obtained from previous studies. Results and Discussion The herbicide terbuthylazine applied in the recharge zone can be transported by surface water and enter the aquifer. Detected concentrations were always well below the EU drinking water limit and the fraction that can reach the groundwater under normal cropping practices is small, very likely less than 0.2%. Recommendations and Outlook The use and application rates of pesticides should be strictly regulated in recharge areas. Vegetated buffer strips can mitigate the impact of herbicides on surface water through reducing drift and early-spring runoff. Attention should also be paid to the fate of the main metabolites from soil biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号