首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.

  相似文献   

2.
The environmental impacts of municipal wastewater discharges on receiving waters are numerous and inputs of contaminants such as metals can cause toxicity to organisms in receiving waters. The effluents generated by the treatment plant of the city of Montreal, Canada, the largest such facility in the St. Lawrence Valley, was investigated to determine the environmental fate of trace metals in the receiving waters. Total and extractable metal concentrations were determined and physico-chemical parameters were measured to characterize the receiving waters and evaluate their influence on the fate and behaviour of metals released from the urban effluent. Our results showed that particulate metals near the effluent discharge point are highly reactive and their distribution seems to be significantly influenced by the abundance of HCl-reactive iron and manganese, which act as trace-metal carriers. The partitioning of metals between dissolved and particulate phases varies along the effluent dispersion plume and therefore could strongly influence the exposure routes for aquatic organisms that are exposed to the various contaminants released from the effluent.  相似文献   

3.
A pan-European monitoring campaign of the wastewater treatment plant (WWTP) effluents was conducted to obtain a concise picture on a broad range of pollutants including estrogenic compounds. Snapshot samples from 75 WWTP effluents were collected and analysed for concentrations of 150 polar organic and 20 inorganic compounds as well as estrogenicity using the MVLN reporter gene assay. The effect-based assessment determined estrogenicity in 27 of 75 samples tested with the concentrations ranging from 0.53 to 17.9 ng/L of 17-beta-estradiol equivalents (EEQ). Approximately one third of municipal WWTP effluents contained EEQ greater than 0.5 ng/L EEQ, which confirmed the importance of cities as the major contamination source. Beside municipal WWTPs, some treated industrial wastewaters also exhibited detectable EEQ, indicating the importance to investigate phytoestrogens released from plant processing factories. No steroid estrogens were detected in any of the samples by instrumental methods above their limits of quantification of 10 ng/L, and none of the other analysed classes of chemicals showed correlation with detected EEQs. The study demonstrates the need of effect-based monitoring to assess certain classes of contaminants such as estrogens, which are known to occur at low concentrations being of serious toxicological concern for aquatic biota.  相似文献   

4.
The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.  相似文献   

5.
Zeng X  Sheng G  Gui H  Chen D  Shao W  Fu J 《Chemosphere》2007,69(8):1305-1311
The occurrence and distributions of six polycyclic musks were studied in influent, primary and effluent waters from a municipal wastewater treatment plant (WWTP) in Guangdong. Five polycyclic musk compounds, 1,2,3,5,6,7-hexahydro-1,1,2,3,3-pentamethyl-4H-inden-4-one (DPMI), 4-acetyl-1,1-dimethyl-6-tert-butylindan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) were found in wastewater in the WWTP. DPMI, HHCB and AHTN were measured at 0.38-0.69, 11.5-146, 0.89-3.47 microg/l, respectively, in influents. Meanwhile 0.06-0.10 microg/l DPMI, 0.95-2.05 microg/l HHCB, 0.10-0.14 microg/l AHTN were detected in effluents, ADBI and AHMI were also detected in some primary waters and effluents. The results suggested that wastewater from cosmetic plants cause high loadings of polycyclic musks to this WWTP. Under the currently applied treatment technology, the removal efficiencies achieved were 61-75% for DPMI, 86-97% for HHCB and 87-96% for AHTN by transfer to sludge as the main removal route.  相似文献   

6.
The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.  相似文献   

7.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

8.
Environmental Science and Pollution Research - In this study, the risk of Aspergillus (Asp.) positivity and its respiratory health impacts on wastewater treatment plant (WWTP) workers were studied....  相似文献   

9.
It has been previously demonstrated that vitellogenin (VTG) - a precursor egg yolk protein - is produced in male fish exposed to estrogenic compounds in wastewater treatment plant (WWTP) effluent. However, little attention has been given to examine whether any patterns of male VTG production exists across fish species on a global scale. We hypothesized that a composite measure of human population size over river discharge would best explain variations of protein levels in male fish. We compiled VTG data in 13 fish species from 43 rivers receiving municipal WWTP effluent on 3 continents. We found that human population size explained 28% of the variation in male VTG concentrations, whereas population/flow rate failed to significantly correlate with VTG. We suggest this result may be explained by the low solubility of estrogenic compounds, resulting in localized contamination near WWTP outfalls, rather than dilution by river water.  相似文献   

10.
Yeom DH  Lee SA  Kang GS  Seo J  Lee SK 《Chemosphere》2007,67(11):2282-2292
This study evaluated the effects of an industrial wastewater treatment plant (IWTP) and a municipal wastewater treatment plant (MWTP) effluents on a variety of bioindicators ranging from biochemical, organism, and population-level responses in pale chub (Zacco platypus) and fish community structure. The Index of Biotic Integrity (IBI) indicated that the site upstream of these wastewater treatment plant discharges is in fair–good condition and downstream of the plant is in poor condition. The EROD (ethoxyresorufin-O-deethylase) activity, condition factor, and liver somatic index were significantly increased at the downstream site compared to those of the upstream site. The most significant change observed in pale chub population in the downstream site of the Miho Stream, relative to the upstream population, was the total absence of an younger age group. Stressors impacting the downstream site were identified as mostly organic or nutrient enrichment and habitat degradation associated with wastewater treatment plants. The results of causal analysis suggest that the primary causes affecting fish population in the downstream site are through both size-selective mortality caused by ammonia toxicity and recruitment failure caused by habitat degradation and reproduction problem due to an IWTP and MWTP effluents.  相似文献   

11.
Zhang Y  Geissen SU  Gal C 《Chemosphere》2008,73(8):1151-1161
In the aquatic environment, pharmaceuticals have been widely found. Among them, carbamazepine and diclofenac were detected at the highest frequency. To evaluate the worldwide environmental impacts of both drugs, their global consumption volumes are estimated, based on the dose per capita. The metabolites of these pharmaceuticals are also of environmental concerns, especially trans-10,11-dihydro-10,11- dihydroxycarbamazepine (CBZ-diol) which probably has a similar concentration in water bodies to that of its parent drug. The removal efficiencies and mechanisms of both drugs in the wastewater treatment plants (WWTPs) are discussed with the actual state of knowledge. The occurrences of both drugs are examined in various water bodies including WWTP effluents, surface waters, groundwater and drinking water. Their chemical, physical and pharmacological properties are also addressed in context, which can largely influence their environmental behaviors. The ecotoxicological studies of both drugs imply that they do not easily cause acute toxic effects at their environmental concentrations. However their chronic effects need cautious attention.  相似文献   

12.
We created a database in order to quantitatively assess the occurrence and removal efficiency of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants (WWTPs). From 117 scientific publications, we compiled 6641 data covering 184 PPCPs. Data included the concentrations of PPCPs in WWTP influents and effluents, their removal efficiency and their loads to the aquatic environment. The first outputs of our database allowed to identify the most investigated PPCPs in WWTPs and the most persistent ones, and to obtain reliable and quantitative values on their concentrations, frequency of detection and removal efficiency in WWTPs. We were also able to compare various processes and pointed out activated sludge with nitrogen treatment and membrane bioreactor as the most efficient ones.  相似文献   

13.
Nakata H  Kannan K  Jones PD  Giesy JP 《Chemosphere》2005,58(6):759-766
The occurrence of quinolone antibiotics (QAs) was investigated in wastewater effluents and surface river/lake waters in the US and Canada by using solid-phase extraction with mixed phase cation exchange disk cartridge and liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography fluorescence detection (LC-FLD). Ofloxacin (OFL) was detected in secondary and final effluents of a wastewater treatment plant (WWTP) in East Lansing, Michigan, at concentrations of 204 and 100 ng/l, respectively. The mass flow calculation, estimated by multiplying the OFL concentration in the final effluent by the average influent volume of the WWTP, showed that the discharge of OFL to the river was 4.8 g/day. The OFL concentrations in wastewater effluents measured in this study are comparable to or less than those observed in several European countries. QAs were not detected in river and lake waters analyzed in this study, which may due to dilution effects and to the higher detection limits, relative to those reported previously. OFL concentrations were approximately 1-2 orders of magnitude lower than the EC50 concentrations for environmental bacterium. However, greater concentrations of other QAs in sewage sludge from WWTPs may result in cumulative effects. Considering that the sewage sludge is applied to the land as fertilizers, soil-dwelling organisms could experience greater exposures to such antibiotics. Monitoring studies of QAs in sewage from WWTPs and in sediment/soil near aquaculture facilities and livestock farms will be necessary for the evaluation of the environmental distribution and risk of these compounds.  相似文献   

14.
Anticoagulants are biocides widely used as pest control agents in agriculture, urban infrastructures, and domestic applications for the control of rodents. Other anticoagulants such as warfarin and acenocoumarol are also used as drugs against thrombosis. After use, anticoagulants are discharged to sewage grids and enter wastewater treatment plants (WWTPs). Our hypothesis is that WWTP effluents can be a source of anticoagulants to receiving waters and that these can affect aquatic organisms and other nontarget species. Therefore, the objective of the present study was to determine the occurrence of 11 anticoagulants in WWTPs receiving urban and agricultural wastewaters. Warfarin was the most ubiquitous compound detected in influent waters and was partially eliminated during the activated sludge treatment, and low nanograms per liter concentration were found in the effluents. Other detected compounds were coumatetralyl, ferulenol, acenocoumarol, flocoumafen, brodifacoum, bromadiolone, and difenacoum at concentrations of 0.86–87.0 ng L?1. Considering water volumes of each WWTP, daily emissions were estimated to be 0.02 to 21.8 g day?1, and thus, WWTPs contribute to the loads of anticoagulants to receiving waters. However, low aquatic toxicity was observed using Daphnia magna as a model aquatic organism.  相似文献   

15.
Estrogenic potencies of the effluents or water samples from wastewater treatment plants (WWTPs), industries and hospitals and some receiving rivers in Beijing city were estimated by using a human estrogen receptor recombinant yeast assay. Estrogenic activity of industrial wastewaters was found to range from 0.1 to 13.3 ng EEQ/L and decreased to the range of 0.03-1.6 ng EEQ/L after treatment. Estrogenic activity in WWTP influent ranged from 0.3 to 1.7 ng EEQ/L and decreased to the range of 0.05-0.5 ng EEQ/L after treatment. In the receiving river waters, the estrogenic effect range was 0.1-4.7 ng EEQ/L. These data suggest that treated industrial effluents and WWTP effluents of concern are not the only source of estrogenic pollution in surface waters in Beijing city. EEQ levels in Beijing river water are likely attributable to untreated municipal and industrial wastewaters discharged directly into the river.  相似文献   

16.
The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L?1 COD and 30 mg L?1 BOD5) and inorganic pollutants (e.g., up to 0.5 mg L?1 Cu and 0.1 mg L?1 Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.  相似文献   

17.
膜生物反应器工艺污水处理厂设计进水水质的确定   总被引:1,自引:0,他引:1  
城市污水处理厂进水水质是工程设计的基本参数,进水水质的测定分析对污水处理厂的设计具有重要意义。对无锡市城北污水处理厂的现状进水水质进行了调查和分析,提出按照水质指标浓度出现的频率确定污水处理厂设计进水水质的方法,并针对采用的膜生物反应器(MBR)工艺的特点,提出:(1)根据实测数据按照一定的保证概率可以用来确定城市污水处理厂设计进水水质;(2)为了使水质的确定更加符合设计工程的实际情况,根据实测数据分析确定设计进水水质指标时,一般还需要进行趋势性调整和季节性调整;(3)确定合理的指标浓度与流量,以此为依据进行反应池的工艺设计,同时要校核夏季温度高、浓度低、流量大和冬季温度低、浓度高、流量小的工况是否满足处理要求,然后取冬、夏季校核值以及未作季节性调整设计值中最不利情况作为设计值,才能充分保证出水达到处理要求。  相似文献   

18.
Moon HB  Yoon SP  Jung RH  Choi M 《Chemosphere》2008,73(6):880-889
Toxic organic contaminants and a macrobenthic community were assayed in sediments collected near a wastewater treatment plant (WWTP) outfall to assess the impact of WWTP discharges on an aquatic environment. Average concentrations of toxic organic contaminants in sediments from 20 locations were 96.7ng TEQ/kg dry matter for PCDD/Fs, 1.84ng TEQ/kg dry matter for dioxin-like PCBs, 29.1microg/kg dry matter for PBDEs, 411microg/kg dry matter for nonylphenols, 1021microg/kg dry matter for fecal sterols, and 928microg/kg dry matter for PAHs. Concentrations of all the organic contaminants and fecal sterols varied widely and there was a clear decrease in concentration gradients with increasing distances from the WWTP outfall. This result suggests that WWTP activities contribute to contamination by organic chemicals. A survey of benthic organisms showed the dominance of a few polychaete species, indicating a deterioration of the macrobenthic community by the WWTP discharge. Non-parametric multidimensional scaling (MDS) ordination and Spearman correlation analyses showed that organic contamination is associated with the benthic community structure. For polychaete species, the sensitive species for organic contaminants was Paraprionospio pinnata, while contaminant-tolerant species were Spiochaetopterus koreana and Capitella capitata. BIOENV analyses of all locations suggested PCDDs and PCDFs as the major contaminants influencing the structure of the macrobenthic community. The present study highlights that continuous WWTP discharges contribute to severe organic contamination and risks for the benthic community in an aquatic ecosystem.  相似文献   

19.
Alkylphenols (APs), alkylphenol ethoxylates (APEOs), ethoxycarboxylate metabolites (APECs) and bisphenol A were determined in surface water using solid-phase extraction (SPE) followed by triple-quadrupole LC-MS-MS. APs were separated by LC from APECs using an acetonitrile-water-gradient without the addition of any buffer. Nonylphenol ethoxycarboxylates (NPECs) interfere in the detection of nonylphenols (NPs) when using an acidic mobile phase, because they produce the same MS-MS fragment ions (219>133 and 147). 4n-NP shows the characteristic transition 219>106; it is well suited as internal standard. Nonylphenol ethoxylates NPE(n)Os (n=1-17) were analysed separately in a second run by positive ionization using an ammonium acetate mobile phase. Textile industry discharges, the corresponding wastewater treatment plant (WWTP) effluents and the receiving rivers in Belgium and Italy were analysed. Among the substances investigated, NPE1C and NPE2O exhibited the highest concentrations in the water samples, up to 4.5 microg l(-1) NPE1C in a WWTP effluent and 3.6 microg l(-1) NPE2O in a river. The highest NP levels were found in the receiving rivers (max. 2.5 microg l(-1)). The predicted no-effect concentration (PNEC) for NP of 0.33 microg l(-1) for water species was frequently exceeded in the surface waters investigated, suggesting potential adverse effects to the aquatic environment.  相似文献   

20.
The distribution and occurrence of 15 antibiotics in surface water of the Pearl River System (Liuxi River, Shijing River and Zhujiang River) and effluents of four wastewater treatment plants (WWTPs) were investigated in two sampling events representing wet season and dry season by using rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode. Only eight antibiotics (sulfadiazine, sulfapyridine, sulfamethazine, sulfamethoxazole, trimethoprim, roxithromycin, erythromycin-H?O and norfloxacin) were detected in the water samples of the three rivers and the effluents. The detection frequencies and levels of antibiotics in the dry season were higher than those in the wet season. This could be attributed to the dilution effects in the wet season and relatively lower temperature in the dry season under which antibiotics could persist for a longer period. The levels of the detected antibiotics in different sites are generally in a decreasing order as follows: Shijing River ≥WWTP effluent ≥Zhujiang River ≥ Liuxi River. Risk assessment based on the calculated risk quotients showed that only erythromycin-H?O and roxithromycin detected in the Pearl Rivers might have adverse effects on aquatic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号