首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The release of chemicals due to road transportation accidents could have adverse consequences such as fatality, physical and financial loss and environmental damage. The purpose of this study was to determine the suitable margin of safety/survival of individuals in HAZMAT road transportation accidents for use in Emergency Response Planning (ERP). In this study, at first, the safety margin and survival margin were defined and proposed. Then, as a case study, the chemical tanker trucks in Iran's road transport fleet were investigated and the full bore rupture of the tanker trucks was considered as the selective scenario. Eventually, safety margin and survival margin were determined using ALOHA and PHAST software and the Chemical Exposure Index (CEI). The results showed that using the CEI, among the selected chemicals, ammonia, chlorine and 1,3-butadiene had the highest chemical release potential with the exposure indices of 597, 548 and 284, respectively, and need further investigation. The possible safety margin obtained in this study was distances over 5100 m (using ALOHA software for ammonia) and 10,983 m (using PHAST software for chlorine). On the other hand, the survival margin was distances over 980 m away from the accident area (using ALOHA software for ammonia) and 620 m away from the accident area (using the PHAST software for chlorine). The results of this study indicate that determining the safety and survival margins surrounding the tanker trucks and containers of chemicals is a critical issue for the emergency response planning and determining the standards of road's safety and survival margins. On the other hand, due to the obtainment of different results by various methods and software, in road accidents, the highest hazard distance is suggested to be considered to determine the safety margin (distances longer than 10,983 m) and survival margin (distances longer than 980 m) for ERP, regardless of the type of used material and software.  相似文献   

2.
The transportation of hazardous materials by road is an utmost necessity of the world for the societal benefits, but at the same time the activity is inherently dangerous. Incidents involving hazardous material (hazmat) cargo particularly the class-2 materials can lead to severe consequences in terms of fatalities, injuries, evacuation, property damage and environmental degradation. The rationale behind considering class-2 hazmats is that they pose the greatest danger to the people and property along the transport route because of their storage condition on the transport vessel. They are stored either in pressurized vessels or in cryogenic containers. Any external impact due to collision may cause catastrophic failure of transport vessels, known as BLEVE (Boiling Liquid Expanding Vapour Explosion) with devastating consequences. Further, any continuous release from containment may cause what is known as ‘Unconfined Vapour Cloud Explosion’ (UVCE). Historically frequency of BLEVE occurrence is of the order of 1 × 10−6 per year or less, but other release scenarios e.g. a large vapour or liquid leaks are more probable and could also have devastating effects on the surrounding population. As such, the paper discussed various event scenarios and the consequences taking examples of a class-2.1 material (1,3 butadiene) and another class-2.3 (ammonia) hazmat. Comparative analysis suggests that per ton basis a rupture of ammonia tanker gives rise to larger impact areas and poses larger lethality risks compared to 1,3 butadiene as far as toxic effects are concerned. Besides, from fireball fatality on similar basis propylene causes higher consequence distance than LPG followed by ethylene oxide and 1,3 butadiene. The impact zone study results may be utilized as inputs for identifying the potential vulnerable area on a GIS enabled map, along a designated State highway route passing through an important industrial corridor in western India.  相似文献   

3.
Predicting release rates is the first step, and a crucial step, in consequence analysis. When the release is from an isolated volume of vessel and/or piping, the release rate decreases with time. There is often debate about what equivalent hole sizes should be used for a consequence study, and usually a range of hole sizes (3–4 values) is examined.This paper shows the effect of hole size on the ultimate impact of hydrocarbon releases for several scenarios and the methodology to select them. The impact depends on the intensity and exposure time. The intensity for a fire is the thermal radiation level, and that for an unignited release is the gas concentration. As the release rate decreases with time, so does the intensity. Probit functions describe the probability of a given impact based on the time-varying intensity. For a number of example scenarios, the predictions show that the worst-case hole size is an intermediate hole size, i.e., the impact goes through a maximum with increasing hole size. For smaller holes, the event is small enough that its impact is low even though the duration is long. For larger holes, the initial event is large but decreases so rapidly that the impact is low. For the intermediate hole, the event is large enough, and the duration long enough, to cause the greatest impact.This consequence study was made evaluating hole sizes with diameters between 5 and 400 mm in a fixed volume upstream process vessel. Worst case scenario consequence predictions for fire damages, effects on people and toxic releases were determined to be somewhat different for different hole sizes. However, hole sizes in the 30 mm–90 mm range seems to have the highest impact in dry gas service.  相似文献   

4.
In order to assess the potential risk of pipeline underwater leakage, a self-designed experimental setup is carried out to study the gas release rate and dispersion behavior in different release scenarios. A transparent organic glass tank with dimension of 1 m × 0.5 m × 0.5 m (height × width × length) was placed in a wind tunnel. The release pipeline made by stainless-steel with diameter of 25 mm were used to simulate for variation release depth. The different size and shape of leakage orifices in 1 mm, 3 mm, 5 mm in round and 3.5 × 2 mm, 7 × 1 mm in rectangle were designed for comparison. The medium of methane gas was released from the controllable cylinder. The variation parameters of flow rate and pressure were measured by a flow meter and pressure gauge respectively. A high speed camera was employed to recorded the phenomenology of dispersion characteristics and breakup process for a wide range of orifice size in the time-resolved images. The dynamic plume diameter on water surface was measured by a Vernier caliper placed above the water tank. The considered factors including orifice size, leakage pressure and water depth effect on gas flow rate and dispersion behavior was quantitative investigated. The fitting correlation between the gas flow rate and variation parameters can provide fundamental information for evaluation the hazard consequences of gas release in engineering application.  相似文献   

5.
We present the results of a parametric sensitivity analysis of a widely used model for atmospheric dispersion of toxic gases, in order better to understand the influence of user-adjustable parameters on model outputs. We have studied 60 min continuous release scenarios for three different products (nitric oxide, ammonia and chlorine), chosen to cover a range of physical characteristics and storage conditions. For each product, we have broken down base-case scenarios into a number of sub-scenarios corresponding to different release conditions which determine physical phenomena (flow rate, release angle, release elevation and atmospheric stability class). The use of statistical tools to analyze the results of a large number of model executions allows us to rank model parameters according to their influence on the variability of a number of model outputs (distances and concentrations), on a per-scenario and per-product basis. Analysis of the results allows us to verify our understanding of the modeling of cloud dispersion.  相似文献   

6.
7.
Incidental release of toxic chemicals can pose extreme danger to life in the vicinity. Therefore, it is crucial for emergency responders, plant operators, and safety professionals to have a fast and accurate prediction to evaluate possible toxic dispersion life-threatening consequences. In this work, a toxic chemical dispersion casualty database that contains 450 leak scenarios of 18 toxic chemicals is constructed to develop a machine learning based quantitative property-consequence relationship (QPCR) model to estimate the affected area caused by toxic chemical release within a certain death rate. The results show that the developed QPCR model can predict the toxic dispersion casualty range with root mean square error of maximum distance, minimum distance, and maximum width less than 0.2, 0.4, and 0.3, which indicates that the constructed model has satisfying accuracy in predicting toxic dispersion ranges under different lethal consequences. The model can be further expanded to accommodate more toxic chemicals and leaking scenarios.  相似文献   

8.
Dispersion of several common `heavy' gases (ethylene, propylene, ammonia, and chlorine) has been modelled on the basis of modifications in plume path theory. The model takes into account, among other things, the variations in temperature, density, and specific heat during the movement of the heavy gas plume. The effects of wind speed, density of the gas, and venting speed on the plume dispersion have been simulated. Based on the simulations a set of empirical equations has been developed. The equations have been validated by theoretical as well as experimental studies.Studies have also been carried out to simulate the effect of venting speed (manipulated by injecting hot air with the released gas) on the plume dispersion. The study reveals that the effect of venting speed on dispersion is very pronounced and can be used to reduce the risk posed by the accidental luxurious release of toxic/flammable gases. For example an increase of 20% in venting speed of chlorine (54.1 m/s) can reduce the distance up to which toxic concentration would occur by about 1100 meters.  相似文献   

9.
When handling flammable and/or toxic liquids or gases, the gas dispersion following a release of substance is a scenario to be considered in the risk assessment to determine the lower flammability distance (LFD) and toxicity thresholds. In this work a comparison of different gas dispersion tools of varying complexity ranging from a simple Gaussian model over a boundary layer model (BLM) and a Lagrangian model to CFD (in this case ANSYS CFX v14) is presented. The BLM covers the special case of liquid releases with formation of a pool. It does not only solve the gas dispersion but also calculates the evaporating mass flow out of the pool. The simulation values are compared to each other and to experimental data resulting mainly from our own open air experiments covering the near field and carried out on the Test Site Technical Safety of BAM (BAM-TTS) for different release types (pool evaporation, gas release) and topologies. Other validation data were taken from literature and cover large scale experiments in the range of several 100 m.  相似文献   

10.
Widespread chemical plants render human life more vulnerable to major natural disasters such as earthquakes. Recognizing the potential cascading threats initiated by a devastating earthquake, a general methodology for assessing the life loss risks introduced by airborne hazardous chemical dispersion following seismically induced chemical release (SICR) was proposed. With a 600 km × 600 km region in North China as a demonstrative study area, the dispersion of ammonia released from multiple relevant chemical plants that were supposed to be damaged by a devastating earthquake was simulated in a probabilistic manner. Using an ammonia toxicity-fatality relationship and its toxicity concentration threshold, regional life loss and spatial spread were evaluated. The life loss risk was found to be non-prominent but would be very contingent on unfavorable meteorological conditions. Non-parametric correlation analysis revealed that the respective effects of meteorological mixing parameters on the risk exhibit new features in a disaster context, that is, stronger mixing would cause elevation of risk in a region. This preliminary research implied that the risk of chemical-induced life loss after a devastating earthquake deserves attention and a thorough uncertainty evaluation in the future.  相似文献   

11.
The problem of toxic smoke in case of an accident with fire scenario is particularly severe in long tunnels and immediate effects from combustion product exposure often include fatalities. Notwithstanding extensive studies on fire simulation in tunnel, there is still a substantial lack of information on the different toxic products from combustion of light or heavy vehicles. In particular, there is a need for reliable test methods suitable to provide toxic products yields connected to defined accidental fire scenarios. In this paper, experimental runs in a laboratory scaled tunnel, simulating accidental fires of different heat release rates allowed firstly to characterize the thermal profiles in pool and car fires and to compare results by an analytical pool fire model. Results were compared as well with those obtained in a real scale tunnel, so as to quantitatively assess the scaling effect. A series of experiments was performed simulating an accidental scenario including pool fire from collision between a light vehicle and a HazMat heavy vehicle. An extensive set of experimental data allowed performing with good accuracy and reproducibility a complete characterization of toxic gases from car model fires, together with carbon monoxide and oxygen trends. The results obtained under different heat release rates allowed evidencing the dependence of the yields of toxic gases upon the considered scenario. Based on the intrinsic toxicity data of identified compounds, it is possible to draw practical conclusions, useful to assess the potential hazard associated to exposure to toxic smoke in road tunnel.  相似文献   

12.
Two-phase CFD (Computational Fluid Dynamics) model for characterising the spill-over/dispersion of peroxy-fuels is presented. The model is independent of type and burning rate of the spilled/dispersed fuel and considers only overflow Reynolds number (Re) to characterise the spill/dispersion behaviour. Additional simulations are performed for LNG (Liquified Natural Gas) dispersion and it is found that the model can be used for different fuels within a defined range of Re. Different scenarios with Re = 100 to 3 × 105 are investigated covering a wide range of mass flow rates, opening sizes and viscosities. Depending on Lower Flammability Limits (LFL) of the fuels spill/dispersion (vapour cloud) diameters (DCFD) and heights (hCFD) are predicted. A generalised correlation between DCFD and Re is established to predict the dispersion occurring at varying scales. The model is validated by: (1) conducting an extensive grid independent study; (2) comparing the results with the existing analytical methods and (3) comparing against the standard field test data on LNG dispersions.  相似文献   

13.
In Great Britain, advice on land-use planning decisions in the vicinity of major hazard sites and pipelines is provided to Local Planning Authorities by the Health and Safety Executive (HSE), based on quantified risk assessments of the risks to the public in the event of an accidental release. For potential exposures to toxic substances, the hazard and risk is estimated by HSE on the basis of a “toxic load”. For carbon dioxide (CO2), this is calculated from the time-integral of the gas concentration to the power eight. As a consequence of this highly non-linear dependence of the toxic load on the concentration, turbulent concentration fluctuations that occur naturally in jets or plumes of CO2 may have a significant effect on the calculated hazard ranges. Most dispersion models used for QRA only provide estimates of the time- or ensemble-averaged concentrations. If only mean concentrations are used to calculate the toxic load, and the effects of concentration fluctuations are ignored, there is a danger that toxic loads and hence hazard ranges will be significantly under-estimated.This paper explores a simple and pragmatic modification to the calculation procedure for CO2 toxic load calculations. It involves the assumption that the concentration fluctuates by a factor of two with a prescribed square-wave variation over time. To assess the validity of this methodology, two simple characteristic flows are analysed: the free jet and the dense plume (or gravity current). In the former case, an empirical model is used to show that the factor-of-two approach provides conservative estimates of the hazard range. In the latter case, a survey of the literature indicates that there is at present insufficient information to come to any definite conclusions.Recommendations are provided for future work to investigate the concentration fluctuation behaviour in dense CO2 plumes. This includes further analysis of existing dense gas dispersion data, measurements of concentration fluctuations in ongoing large-scale CO2 release experiments, and numerical simulations.  相似文献   

14.
With the widespread use of ammonia in the process industry, more and more accidents were caused by ammonia leakage and dispersion. The dispersion of ammonia is determined by its physical properties, release source conditions and atmospheric environment. Full-scale numerical simulation based on CFD theory was carried out to study the dispersion law of ammonia in a food factory. It was found that ammonia concentrated on the symmetric plane and showed an upward movement near the source. Moreover, the effect of pressure on the dispersion of ammonia was explored showing that the concentration of ammonia near the source increased with the increase of pressure, while the dispersion of ammonia far from the source is mainly influenced by wind field. Last but not the least, the dangerous area completely covers the obstacle region according to the harmful concentration, but the lethal concentration range and explosion range both only existed near the release source. Correspondingly, the concentration of ammonia in the region far from the symmetric plane can be regarded as a safe area. When the accident happens, one should stay away from the release source and evacuate towards the sides in a timely manner. We hope that this work can provide an effective method in predicting the impact of ammonia dispersion and can arouse concerns over the public safety.  相似文献   

15.
16.
Hydrogen fluoride and ammonia are widely used in chemical industries. Both substances are hazardous and frequently a source of leakage accidents. Since a hydrogen fluoride release accident occurred in Gumi, S. Korea (2012), the Korea Occupational Safety and Health Agency (KOSHA) has emphasized that special attention and management are needed with respect to toxic substances. For post-release mitigation, a water curtain is known as one of the most effective and economical systems. In this study, a computational fluid dynamics (CFD) program was used to identify the effect of using a water curtain as a mitigation system for toxic substances that leak out from industrial facilities. Simulations were conducted to analyze how effectively a water curtain could mitigate the dispersion of toxic substances. To verify the simulation's accuracy, the INERIS Ammonia dispersion experiment and Goldfish experiment were simulated and compared. Various water curtains were applied to the simulated field experiment to confirm the mitigation factors with toxic substances. The results show that the simulations and experiments are consistent and that the dispersion of toxic substances can be mitigated by water curtains in certain circumstances.  相似文献   

17.
为研究海底原油与天然气单相泄漏扩散规律的差异性,合理制定应急响应策略,减小事故损失,针对海底管道失效所致的原油与天然气泄漏问题,基于计算流体动力学CFD方法,建立海底油气管道泄漏事故后果预测与评估模型,对特定事故场景下的海底原油与天然气泄漏扩散过程进行模拟与分析,从泄漏扩散过程、工况因素影响、泄漏后果及应对策略4个方面对比原油与天然气的泄漏扩散特性。结果表明:相同工况下,海底原油与天然气在泄漏速率、扩散时间、扩散形态及水平最大扩散距离方面存在显著差别;与天然气相比,原油泄漏扩散行为对工况因素具有更高的敏感性;原油泄漏会引发严重的环境灾害,天然气泄漏则会影响海上结构物的稳定性及引发火灾爆炸事故,据此需合理制定具有针对性的应对策略。  相似文献   

18.
Accidental gas releases are detected by allocating sensors in optimal places to prevent escalation of the incident. Gas release effects are typically assessed based on calculating the dispersion from releasing points. In this work, a CFD-based approach is proposed to estimate gas dispersion and then to obtain optimal gas sensors allocation. The Ansys-Fluent commercial package is used to estimate concentrations in the open air by solving the governing equations of continuity, momentum, energy and species convection-diffusion combined with the realizable κ-ε model for turbulence viscosity effects. CFD dynamic simulations are carried out for potential gas leaks, assuming worst-case scenarios with F-stability and 2 m/s wind speed during a 4 min releasing period and considering 8 wind directions. The result is a scenario-based methodology to allocate gas sensors supported on fluid dynamics models. The three x–y–z geographical coordinates for the sensor allocation are included in this analysis. To highlight the methodology, a case study considers releases from a large container surrounded by different types of geometric units including sections with high obstacles, low obstacles, and no obstacles. A non-redundant set of perfect sensors are firstly allocated to cover completely the detection for all simulations releases. The benefits of redundant detection via a MooN voting arranging scheme is also discussed. Numerical results demonstrate the capabilities of CFD simulations for this application and highlight the dispersion effects through obstacles with different sizes.  相似文献   

19.
In industries some dangerous liquefied gases may accidentally release and it may form a flammable or toxic mixture after mixing with air. One tool that is being developed in industry for two-phase cloud dispersion modeling is computational fluid dynamics (CFD). In this paper, the dispersion processes of different dangerous materials including liquefied chlorine, liquefied ammonia and liquefied petroleum gas were simulated in the same condition to analyze the characteristics of the initial expansion processes by CFD tool. The heat and mass transfer between droplets and the vapor after an instantaneous release event was calculated by using the Eulerian–Lagrangian method. The results from a number of 3-D CFD based studies were compared with the available small-scale experimental results. The results show that the present model and numerical simulation are reliable.  相似文献   

20.
Forecasting the behaviour of a flammable or toxic cloud is a critical challenge in quantitative risk analysis. Recent literature shows that empirical and integral models are unable to model complex dispersion scenarios, like those occurring in semi-confined spaces or with the presence of physical barriers. Although CFD simulators are promising tools in this regard, they still need to be fully validated with comprehensive datasets coming from experimental campaigns designed ad-hoc. In this paper, we present an experimental campaign carried out by a joint venture between University of São Paulo and Universitat Politècnica de Catalunya to investigate CFD tools performance when used to analyse clouds dispersion. The experiments consisted on propane cloud dispersion field tests (unobstructed and with the presence of a fence obstructing the flow) of releases up to 0.5 kg s−1 of 40 s of duration in a discharge area of 700 m2. We provide a full 1-s averaged propane concentration evolution dataset of two experiments, extracted from 29 points located at different positions within the cloud, with which we have tested FLACS® CFD-software performance. FLACS reproduces successfully the presence of complex geometry, showing realistic concentration decreases due to cloud dispersion obstruction by the existence of a fence. However, simulated clouds have not represented the whole complex accumulation dynamics due to wind variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号