首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Total suspended particulate (TSP) samples have been collected at six stations in the C and B lines of the Buenos Aires underground system and, almost simultaneously, at six ground level sites outside and nearby the corresponding underground stations, in the Oct 2005/Oct 2006 period. All these samples were analyzed for mass and elemental Fe, Cu, and Zn concentrations by using the Particle Induced X-ray Emission (PIXE) technique. Mostly, TSP concentrations were found to be between 152 μg m−3 (25% percentile) and 270 μg m−3 (75% percentile) in the platform of the stations, while those in outside ambient air oscillated from 55 μg m−3 (25% percentile) to 137 μg m−3 (75% percentile). Moreover, experimental results indicate that TSP levels are comparable to those measured for other underground systems worldwide. Statistical results demonstrate that subway TSP levels are about 3 times larger on average than those for urban ambient air. The TSP levels inside stations and outdoors are poorly correlated, indicating that TSP levels in the metro system are mainly influenced by internal sources.Regarding metal concentrations, the most enriched element in TSP samples was Fe, the levels of which ranged from 36 (25% percentile) to 86 μg m−3 (75% percentile) in Line C stations, while in Line B ones they varied between 8 μg m−3 (25% percentile) and 46 μg m−3 (75% percentile). As a comparison, Fe concentrations in ambient air oscillated between 0.7 μg m−3 (25% percentile) and 1.2 μg m−3 (75% percentile). Other enriched elements include Cu and Zn. With regard to their sources, Fe and Cu have been related to processes taking place inside the subway system, while Zn has been associated with outdoor vehicular traffic. Additionally, concerns about possible health implications based on comparisons to various indoor air quality limits and available toxicological information are discussed.  相似文献   

2.
Mercury (Hg) concentration profiles and historical accumulation rates were determined in three 210Pb-dated cores from a peat deposit in the vicinity of a lead (Pb) smelter at Příbram, Czech Republic. The Hg concentrations in peat samples ranged from 66 to 701 μg kg−1. Cumulative Hg inventories from each core (for the past 150 yr) varied by a factor of 1.4 (13.6–18.5 mg Hg m−2), indicating variations of net Hg accumulation rate within the peat deposit. Historical changes in vegetation cover (leading to variable interception by trees) are probably responsible for this variation in space and time. The uncorrected Hg accumulation rates peaked between the 1960s and 1980s (up to 226 μg m−2 yr−1). Recent findings show that Hg records from peat tend to overestimate historical levels of Hg deposition. Therefore we used the mass loss compensation factor (MLCF) to normalize Hg accumulation rates. These corrected Hg accumulation rates were significantly lower (maximum 129 μg m−2 yr−1) and better corresponded to changes in historical smelter emissions, which were highest in the 1960s. The agreement between the corrected Hg accumulation rates in the uppermost peat sections (2–38 μg m−2 yr−1) and biomonitoring of atmospheric deposition by mosses in several recent years (4.7–34.4 μg m−2 yr−1) shows the usefulness of MLCF application on Hg accumulation in peat archives. However, the MLCF correction was unsuitable for Pb. The recent Pb deposition rates obtained by an independent biomonitoring study using mosses (0.5–127 mg m−2 yr−1) were better correlated with net Pb accumulation rates recorded in peat (7–145 mg m−2 yr−1) than with corrected rates obtained by the MLCF approach (1–28 mg m−2 yr−1).  相似文献   

3.
Simultaneous size distributions and Fourier transform infrared (FTIR) extinction spectra have been measured for several representative components of mineral dust aerosol (quartz, calcite, and dolomite) in the fine particle size mode (D=0.1–1 μm). Optical constants drawn from the published literature have been used in combination with the experimentally determined size distributions to simulate the extinction spectra. In general, Mie theory does not accurately reproduce the peak position or band shape for the prominent IR resonance features in the 800–1600 cm−1 spectral range. The resonance peaks in the Mie simulation are consistently blue shifted relative to the experimental spectra by 20–50 cm−1. Spectral simulations, derived from a simple Rayleigh-based analytic theory for a “continuous distribution of ellipsoids” particle shape model, better reproduce the experimental spectra, despite the fact that the Rayleigh approximation is not strictly satisfied in these experiments. These results differ from our previous studies of particle shape effects in silicate clay mineral dust aerosols where a disk-shaped model for the particles was found to be more appropriate.  相似文献   

4.
Dry atmospheric deposition contributes a significant amount of phosphorus to the Everglades of South Florida. Measurement of this deposition is problematic, because samples often are contaminated to varying degrees by bird droppings and other foreign materials. This study attempted to detect and remove the outliers in phosphorus (P) flux rates measured from dry deposition samples. Visual inspection of the samples, recorded in field notes, found that 30.1% of the samples contained animal droppings and frogs. Some of the samples with droppings and frogs (2.3%) had P values greater than 884 μg P m−2 d−1 (a value twice the standard deviation of the raw data mean), and were removed from further analysis. Outlier detection statistics based on a linear regression were then used for additional data screening. Eight stations in the network of 19 were removed because high contamination precluded the use of the regression model. Of the remaining samples, 15.7% were identified through the regression procedure as contaminated and were removed. The 11 station mean for P dry deposition was 85.8±79.0 μg P m−2 d−1, prior to the regression analysis, and 74.8±75.1 μg P m−2 d−1 after removal.  相似文献   

5.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

6.
In the present study, the exposure to benzene of employees working in two filling stations (one urban and one rural) was estimated, through the method of passive sampling. Additional data (30′ measurements of benzene exposure through active sampling to employees dealing with different activities, meteorological and traffic data) were collected. The measurements campaign was performed in both summer and wintertime to determine the seasonal variation of the exposure pattern.In addition, a set of artificial neural networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees based on active sampling data and the parameters related to the employees’ exposure. The quantification of the contribution of each parameter to the overall exposure pattern was also attempted.The results showed that although vapour recovery technologies are installed in the refuelling systems and benzene emissions are significantly reduced compared to the past, filling station employees are still highly exposed to benzene (52–15 μg m−3). Benzene exposure is strongly correlated to car refuelling (exposure levels up to 85 μg m−3), while activities like car washing or working in cash machine inside an office contribute to lower exposure levels (up to 44 and 24 μg m−3 respectively). In rural filling station, exposure levels were in general lower compared to the urban ones, due to the smaller amount of gasoline that was traded and the absence of any significant traffic effect or urban background concentration. The developed ANN seemed to be a promising technique in the prediction of the exposure pattern giving very good results, and the quantification of the parameters affirmed the importance of the refueling procedure to the exposure levels.  相似文献   

7.
Bacteria inactivation and natural organic matter oxidation in river water was simultaneously conducted via photo-Fenton reaction at “natural” pH (6.5) containing 0.6 mg L−1 of Fe3+ and 10 mg L−1 of H2O2. The experiments were carried out by using a solar compound parabolic collector on river water previously filtered by a slow sand filtration system and voluntarily spiked with Escherichia coli. Fifty five percent of 5.3 mg L−1 of dissolved organic carbon was mineralized whereas total disinfection was observed without re-growth after 24 h in the dark.  相似文献   

8.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

9.
The fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from <1 to 55 g kg−1 of dry wood depending on the combination of appliance type, wood species and moisture content, filter medium, and dilution system. For Teflon filter sampling of stove emissions in the wind tunnel, the total mass EFs varied from 2 to 8 g kg−1 of dry fuel depending on wood type whereas the equivalent fireplace emissions burning wet oak averaged 11 g kg−1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).  相似文献   

10.
Chromium (Cr) is a well-known human carcinogen and a potential reproductive toxicant, but its contribution to ocean pollution is poorly understood. The aim of this study was to provide a global baseline for Cr as a marine pollutant using the sperm whale (Physeter macrocephalus) as an indicator species. Biopsies were collected from free-ranging whales around the globe during the voyage of the research vessel The Odyssey. Total Cr levels were measured in 361 sperm whales collected from 16 regions around the globe detectable levels ranged from 0.9 to 122.6 μg Cr g tissue−1 with a global mean of 8.8 ± 0.9 μg g−1. Two whales had undetectable levels. The highest levels were found in sperm whales sampled in the waters near the Islands of Kiribati in the Pacific (mean = 44.3 ± 14.4) and the Seychelles in the Indian Ocean (mean = 19.5 ± 5.4 μg g−1). The lowest mean levels were found in whales near the Canary Islands (mean = 3.7 ± 0.8 μg g−1) and off of the coast of Sri Lanka (mean = 3.3 ± 0.4 μg g−1). The global mean Cr level in whale skin was 28-times higher than mean Cr skin levels in humans without occupational exposure. The whale levels were more similar to levels only observed previously in human lung tissue from workers who died of Cr-induced lung cancer. We conclude that Cr pollution in the marine environment is significant and that further study is urgently needed.  相似文献   

11.
The goal of this study was to identify and quantify particles emitted from railway traffic. For that purpose PM10 samples were collected near a busy railway line using a wind direction and speed controlled sampling equipment consisting of five devices. Measurements taken perpendicular to the railway lines at 10, 36 and 120 m distance enable an identification and separation of particles caused by the railway traffic from background particles. Morphology and chemistry of more than 11,000 particles were analysed by computer controlled scanning electron microscopy (CCSEM). Based on chemical composition five particle classes are defined and assigned to their sources. The mass of the individual particles is determined by multiplying their volumes, calculated based on their morphology with a density assigned specifically to each particle class. The density of the particle classes is derived from their chemical composition. To estimate the PM10 contributions of the railway lines, the mass of PM10 at 120 m (background, not influenced by the railway lines) is subtracted from the mass of PM10 at 10 m. The emissions of the railway lines are dominated by ‘iron’ particles, which contribute 2.9 μg m−3 or 67% to the railway related PM10. In addition, ‘aluminium’ and ‘calcium’ particles contribute also to the railway related PM10 (1.0 μg m−3 or 23% for the ‘aluminium’ and 0.4 μg m−3 or 10% for the ‘calcium’ particles). These particles are assigned to abrasion of the gravel bed and re-suspension of mineral dust.Long-term gravimetric results of the contribution of iron to the mass of railway related PM10 from a study performed earlier at the same site are in good agreement with the data presented in this study.  相似文献   

12.
A nationwide study of indoor air concentrations of 26 VOCs was conducted in Canada in 1991. The study design was based upon random selection of private residences from 1986 Census data and incorporated a temporal stratification feature that allowed sampling of residences in each of four regions of the country at different times of the year with equal probability. Average 24 h concentrations of 26 VOCs in 754 residences were obtained by a passive monitoring method. Initially, climatic parameters were found to have the second highest relative weight among 14 factors identified by factor analysis. Further analysis by linear regression showed that individual VOC concentrations and average outdoor temperature or relative humidity were poorly correlated (r > 0.13). Detailed analysis of the data from four regions of Canada also gave poor correlations between household VOC concentrations and temperature or relative humidity. Concentrations of all 26 VOCs averaged 7.8 μg m−3 in winter, 10.3 μg m−3 in spring, 4.4 μg m−3 in summer and 10.8μ m−3 in fall. The highest concentrations of individual compounds averaged 84μm−3 for toluene in the spring and 42 μg m−3 in the fall, and 44 μg m−3 for decane in the spring and 48 μg m−3 in the fall. Segregation of the results into outdoor temperature ranges of 0°C, 0–15 and > 15°C gave mean indoor VOC concentrations of 10.3, 9.8 and 50μgm−3, respectively. Further examination of the results revealed that the likely presence of sources within homes had a far greater influence on indoor concentrations than ventilation which is partly influenced by climate.  相似文献   

13.
Fine and coarse atmospheric particles were collected in Ashdod—a midsize industrial city on the southeastern Mediterranean coast, and in Gedera—a rural site, to characterize ambient particles and to determine their long-range transport during two major seasons—winter and summer. Manual PM2.5 and PM10 samplers, dichotomous samplers, continuous automated PM10 samplers, and denuders were used to sample particulate and gaseous pollutants.Fine and coarse concentrations in Ashdod were 21.2 and 39.6 μg m−3, and 23.9 and 30.5 μg m−3 in the fall–winter and summer campaigns, respectively. Crustal material, as calcites or dolomites mixed with silicates, dominated the coarse fraction and also the fine fraction on dusty days. In the fall–winter, S, P, and Ni were coupled with minerals. Coarse Ni was associated with crustal material during dust storms, while P originated from shipping and deposition of phosphates in the urban area around.Sulfates dominated the fine fractions in the summer season averaging 12 μg m−3. Multivariate analysis indicated that S was associated with As and Se, V and Ni, both associated with heavy fuel combustion, and Zn and Pb. In winter, those mixed sources were local, but in summer they were part of long-range transport. In the fall–winter, Zn and Pb were strongly associated with Mn, Ga, and Cu—elements emitted from either traffic or metal processing plants.Although the influence of crustal material on both size fractions was significant, most heavy metals were associated with PM2.5. Higher concentrations were linked to a larger number of particles in this fraction, to a larger surface area available for biochemical reaction [Harrison, R., Shi, J., Xi, S., Khan, A., Mark, D., Kinnersley, R., Yin, J., Philos, T., 2000. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society 358, 2567–2579], and finally to a larger concern in regards to health effects.  相似文献   

14.
In order to investigate the air quality and the abatement of traffic-related pollution during the 2008 Olympic Games, we select 12 avenues in the urban area of Beijing to calculate the concentrations of PM10, CO, NO2 and O3 before and during the Olympic traffic controlling days, with the OSPM model.Through comparing the modeled results with the measurement results on a representative street, the OSPM model is validated as sufficient to predict the average concentrations of these pollutants at street level, and also reflects their daily variations well, i.e. CO presents the similar double peaks as the traffic flow, PM10 concentration is influenced by other sources. Meanwhile, the model predicts O3 to stay less during the daytime and ascend in the night, just opposite to NO2, which reveals the impact of photochemical reactions. In addition, the predicted concentrations on the windward side often exceed the leeward side, indicating the impact of the special street shape, as well as the wind.The comparison between the predicted street concentrations before and during the Olympic traffic control period shows that the overall on-road air quality was improved effectively, due to the 32.3% traffic flow reduction. The concentrations of PM10, CO and NO2 have reduced from 142.6 μg m−3, 3.02 mg m−3 and 118.7 μg m−3 to 102.0 μg m−3, 2.43 mg m−3 and 104.1 μg m−3. However, the different pollutants show diverse changes after the traffic control. PM10 decreases most, and the reduction effect focusing on the first half-day even clears the morning peak, whereas CO and NO2 have even reductions to minify the daily fluctuations on the whole. Opposite to the other pollutants, ozone shows an increase of concentration. The average reduction rate of PM10, CO, NO2 and O3 are respectively 28%, 19.3%, 12.3% and −25.2%. Furthermore, the streets in east, west, south and north areas present different air quality improvements, probably induced by the varied background pollution in different regions around Beijing, along with the impact of wind force. This finding suggests the pollution control in the surrounding regions, not only in the urban area.  相似文献   

15.
This study measured particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in two workplace atmospheres of the sintering grate and rough roll shredder in a sintering plant, and to assess their workers’ health-related exposures. We found that the PCDD/F concentration of the sintering grate (site A = 14.47 pg m−3) was lower than that of the rough roll shredder (site B = 17.20 pg m−3). Particle size distributions of PCDD/Fs were in the form of the unimodal with the mass median aerodynamic diameter (MMAD) of 4.74 μm and 5.23 μm, and geometric standard deviation (σg) of 3.15 and 2.15 for the site A and B, respectively. The above results suggest that the workplace of the site A had a less fraction of coarse particles than that of the site B. The estimated PCDD/F concentrations of the inhalable fraction (11.0 pg m−3) and thoracic fraction (8.89 pg m−3) of the site A were lower than those of the site B (12.4 and 9.39 pg m−3, respectively). But to the contrary the estimated respirable fraction of the site A (5.05 pg m−3) was slightly higher than that of the site B (4.93 pg m−3). Our results clearly indicate the importance to conduct particle size segregating samplings for assessing human PCDD/F exposures.  相似文献   

16.
The advection and dispersion of Asian dust events from China to the Pacific Ocean around Japan during 2000–2002 were investigated using the meteorological satellite data of NOAA/AVHRR and GMS-5/VISSR. Aerosol vapour index images, taking the brightness temperature difference between 11 and 12 μm, are very effective for monitoring the Asian dust phenomenon in the East Asia region, with their capacity for detection during the day or night. We discuss the dust events, focusing on the advection patterns shown in satellite images, which are classified into three types as ‘dry slot’, ‘high-pressure wedge’ and ‘travelling high’, based on synoptic patterns. The results are compared with suspended particulate matter concentrations measured at Japanese surface stations and with ground-based observations of Sakurajima volcano by a web camera system at Kagoshima in Kyushu, Japan. We found that the passage of cold fronts caused a rapid increase of suspended particulate matter (SPM) concentrations, which exceeded 100 μg m−3, and that deep low-pressure complexes strengthened the dust phenomenon. The ‘high-pressure wedge’ type is seen much more clearly in satellite images than the ‘travelling high’ type, but SPM concentrations and visibility were similar in both owing to the differences in the vertical distribution of the dust and in viewing conditions.  相似文献   

17.
The main objective of the present study was to investigate possible links between biomarkers and swimming performance in the estuarine fish Pomatoschistus microps acutely exposed to metals (copper and mercury). In independent bioassays, P. microps juveniles were individually exposed for 96 h to sub-lethal concentrations of copper or mercury. At the end of the assays, swimming performance of fish was measured using a device specially developed for epibenthic fish (SPEDE). Furthermore, the following biomarkers were measured: lipid peroxidation (LPO) and the activity of the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH), glutathione S-transferases (GST), 7-ethoxyresorufin-O-deethylase (EROD), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx). LC50s of copper and mercury (dissolved throughout metal concentrations) at 96 h were 568 μg L−1 and 62 μg L−1, respectively. Significant and concentration-dependent effects of both metals on swimming resistance and covered distance against water flow were found at concentrations equal or higher than 50 μg L−1 for copper and 3 μg L−1 for mercury (dissolved throughout metal concentrations). These results indicate that SPEDE was efficacious to quantify behavioural alterations in the epibenthic fish P. microps at ecologically relevant concentrations. Significant alterations by both metals on biomarkers were found including: inhibition of AChE and EROD activities, induction of LDH, GST and anti-oxidant enzymes, and increased LPO levels, with LOEC values ranging from 25 to 200 μg L−1 for copper and from 3 to 25 μg L−1 for mercury (dissolved throughout metal concentrations). Furthermore, significant and positive correlations were found between some biomarkers (AChE and EROD) and behavioural parameters, while negative correlations were found for others (LPO, anti-oxidant enzymes and LDH) suggesting that disruption of cholinergic function through AChE inhibition, decreased detoxification capability due to EROD inhibition, additional energetic demands to face chemical stress, and oxidative stress and damage may contribute to decrease the swimming performance of fish. Since a reduced swimming capability of fish may reduce their ability to capture preys, avoid predators, and interfere with social and reproductive behaviour, the exposure of P. microps to copper and/or mercury concentrations similar to those tested here may decrease the fitness of wild populations of this species.  相似文献   

18.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

19.
 This study is aimed to characterize the major chemical compositions of PM2.5 from incense burning in a large environmental chamber. Chemical analyses, including X-ray fluorescence for elemental species, ion chromatography for water soluble inorganic species (chloride, nitrate, sulfate, sodium, potassium, ammonium) and thermal/optical reflectance analysis for carbon species were carried out for combustion of three incense categories (traditional, aromatic and church incense). The average concentrations from incense burning ranged from 139.8 to 4414.7 μg m−3 for organic carbon (OC), and from 22.8 to 74.0 μg m−3 for elemental carbon (EC), respectively. The average OC and EC concentrations in PM2.5 of three incense categories were in the order of church incense>traditional incense>aromatic incense. OC/EC ratios ranged from 7.0 to 39.1 for the traditional incense, with an average of 21.7; from 3.2 to 11.9 for the aromatic incense, with an average of 7.7. The concentrations of Cl, SO42−, Na+ and K+ were highly variable. On average, the inorganic ion concentration sequence was traditional incense>church incense>aromatic incense. The profiles for elements were dominated by Na, Cl and K. In general, the major components in PM2.5 fraction from incense burning are OC (especially OC2, OC3 and OC4), EC and K.  相似文献   

20.
Removal of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen and naproxen) using extended sludge age biological process was investigated. The sludge age of the biological system was greater than 200 d. Hydraulic retention time of 12 h was maintained throughout the experiment. The extended sludge age biological process is able to treat pharmaceuticals with good and steady removal efficiencies: 64–93% removal for antibiotics over 1–5 μg L−1 influent concentrations and 94% to complete removal for acetaminophen and ibuprofen with a wide range of influent concentrations 1–100 μg L−1. For ketoprofen and naproxen the removal efficiencies are 79–96% over a range of 1–15 μg L−1 influent concentrations. The removal efficiency decreases with increasing initial concentrations for all target compounds except for ibuprofen. This indicates that the initial influent concentration is an important parameter for the studies of fate of pharmaceuticals. The amount of bio-mass and size of the reactor required to achieve good and steady removal efficiencies for known influent pharmaceutical concentrations are also suggested in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号