首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Mitigation translocation of nuisance animals is a commonly used management practice aimed at resolution of human–animal conflict by removal and release of an individual animal. Long considered a reasonable undertaking, especially by the general public, it is now known that translocated subjects are negatively affected by the practice. Mitigation translocation is typically undertaken with individual adult organisms and has a much lower success rate than the more widely practiced conservation translocation of threatened and endangered species. Nonetheless, the public and many conservation practitioners believe that because population‐level conservation translocations have been successful that mitigation translocation can be satisfactorily applied to a wide variety of human‐wildlife conflict situations. We reviewed mitigation translocations of reptiles, including our own work with 3 long‐lived species (Gila monsters [Heloderma suspectum], Sonoran desert tortoises [Gopherus morafkai], and western diamond‐backed rattlesnakes [Crotalus atrox]). Overall, mitigation translocation had a low success rate when judged either by effects on individuals (in all studies reviewed they exhibited increased movement or increased mortality) or by the success of the resolution of the human–animal conflict (translocated individuals often returned to the capture site). Careful planning and identification of knowledge gaps are critical to increasing success rates in mitigation translocations in the face of increasing pressure to find solutions for species threatened by diverse anthropogenic factors, including climate change and exurban and energy development. Problemas con la Mitigación por Traslocación de Herpetofauna  相似文献   

2.
Efforts to restore an endangered species in its former range should be based on a sound understanding of evolutionary relationships among remaining natural populations. In this study mitochondrial (mt) DNA diversity within and among Gila River drainage populations of the endangered Sonoran topminnow ( Poeciliopsis occidentalis ) in Arizona was compared to that from neighboring populations in Sonora, Mexico, where the species remains locally abundant. No mtDNA diversity was detected within or among samples from the Gila River basin in Arizona. But considerable variation was found within and among populations from several river systems in Sonora. Examination of mtDNA from a population that inhabits the upper reaches of the Río Yaqui in southeastern Arizona revealed substantial divergence between it and all other populations examined. We comment on the implications of this divergent population for topminnow management in Arizona and argue for more-detailed genetic and morphological studies to determine the distributional limits and specific status of this highly divergent form.  相似文献   

3.
Determining evolutionarily significant units in endangered species is one of the most significant challenges facing conservation biology. Often genetic information has been used as the primary basis of recommendations for evolutionarily significant units, but these data should be evaluated carefully and used in conjunction with other information. The endangered Gila topminnow ( Poeciliopsis. o. occidentalis ) has been the subject of extensive conservation biology research and genetic investigation. We extended these data to highly variable genetic markers, examined variation in microsatellite loci, and compared it with previous measures of genetic diversity for the Gila topminnow from the four watersheds in Arizona in which they are still naturally extant. Fish from Monkey Spring were the most highly differentiated from the other populations. Overall, the amounts and patterns of genetic variation were consistent with known historical and physical differences among sites. The four watersheds are highly physically isolated from one another and differ in a number of important factors in their physical habitat, biota, and the life-history of the topminnows. Based on these geographic patterns and the genetic results, we recommend that the four watersheds all be managed and conserved separately.  相似文献   

4.
Translocations and the Preservation of Allelic Diversity   总被引:3,自引:0,他引:3  
Translocation is a tool commonly used for the conservation of threatened and endangered fish species. Despite extensive use, the biological implications of translocation remain poorly understood. Of particular interest is the effect of translocation on genetic variability. Maintenance of genetic variability in these "refuge" populations is assumed to be important for both short- and long-term success. We examined allozyme variability at 16 loci for western mosquitofish ( Gambusia affinis ) populations with known histories of introduction. Refuge populations had significantly lower levels of heterozygosity. Refuge populations also had considerably lower levels of allelic diversity than parental populations. All losses were of relatively rare alleles (frequency less than 0.1 in parental population). These losses were probably due to an undocumented bottleneck early in the introduction history. These results were surprising because the initial transplant involved 900 fish and because mosquitofish have numerous reproductive traits that should minimize the effects of bottlenecks on genetic diversity. A literature review revealed that genetic variability is often reduced in refuge populations and that such reductions typically involve the loss of alleles. We suggest that translocated populations be examined periodically for losses of genetic variability.  相似文献   

5.
《Ecological modelling》2007,201(1):67-74
Translocation is a useful management option for conservation of threatened animal species. It can be used to increase the range of a species, augment the numbers in a critical population, or establish new populations and hence spread the risk of extinction through local catastrophes. As it is an important and expensive conservation tool, translocation management decisions must be carefully considered, with the objective of the translocation project in mind. By analysing the translocation problem within a decision-theory framework, we find optimal management decisions that are rational and transparent. We illustrate our approach using a case study of the bridled nailtail wallaby (Onychogalea fraenata). Our particular translocation question is: if we have a set number of wallabies to translocate in each time period and two translocation sites, how many wallabies should we put at each site given the state of each population to maximise the benefit to the species? We model the translocated populations with first-order Markov chain stochastic population models, and use stochastic dynamic programming to determine the optimal management decisions. We look at two sites with different growth rates – one increasing and one decreasing – and compare the optimal strategies for two different objective functions. The first is a long-term persistence objective function, which maximises the persistence of translocated populations a large number of time steps after the end of the translocation program. The second maximises total population size at the end of the translocation program. Although these objective functions are similar, they generate surprisingly different optimal translocation strategies. When maximising the long-term persistence of the translocated populations, translocation decisions are not important as long as an increasing population is established. This indicates that site quality – rather than the number and timing of translocations – primarily determines the long-term persistence of populations. When maximising total population size, the optimal strategy is to add to the increasing population unless it is above a size where it is likely to reach its carrying capacity over the planning timeframe. As translocation decisions are important in fulfilling the objective, this objective function is more useful in creating practical advice for translocation managers. The discrepancy between the optimal strategies given by the two objectives demonstrates the importance of careful consideration when specifying the goals of a project. This observation applies not only to translocation programs, but any project where clear decision-making is needed.  相似文献   

6.
Abstract:  Translocation has become a widely used conservation tool but remains only marginally successful. High mortality is often attributed to predation, but for highly social species, founder group composition may also play a critical role in postrelease survival. I compared the fitness of black-tailed prairie dogs translocated with or without their family groups. Animals in the family translocated groups were individually marked and observed until coterie membership was determined. Nonfamily translocated animals were trapped without regard to family membership. I measured fitness by retrapping all marked animals remaining at release sites in the summer following release. Family translocated animals were five times more likely to survive and had significantly higher reproductive success than those translocated without families. Predation was an important impediment of translocation success, but family translocation significantly reduced the success of predators on newly established prairie dog colonies. Postrelease survival was also affected by the timing of release, but appeared to be more important for juveniles than adults. These results demonstrate the importance of considering familiarity when translocations are required. More broadly, these results illustrate the value of applying animal behavior to conservation efforts and suggest that other species dependent on social interactions for survival and reproduction may benefit substantially from the maintenance of social groups during translocations.  相似文献   

7.
Success of animal translocations depends on improving postrelease demographic rates toward establishment and subsequent growth of released populations. Short‐term metrics for evaluating translocation success and its drivers, like postrelease survival and fecundity, are unlikely to represent longer‐term outcomes. We used information theory to investigate 25 years of data on black rhinoceros (Diceros bicornis) translocations. We used the offspring recruitment rate (ORR) of translocated females—a metric integrating survival, fecundity, and offspring recruitment at sexual maturity—to detect determinants of success. Our unambiguously best model (AICω = 0.986) predicted that ORR increases with female age at release as a function of lower postrelease adult rhinoceros sex ratio (males:females). Delay of first postrelease reproduction and failure of some females to recruit any calves to sexual maturity most influenced the pattern of ORRs, and the leading causes of recruitment failure were postrelease female death (23% of all females) and failure to calve (24% of surviving females). We recommend translocating older females (≥6 years old) because they do not exhibit the reproductive delay and low ORRs of juveniles (<4 years old) or the higher rates of recruitment failure of juveniles and young adults (4–5.9 years old). Where translocation of juveniles is necessary, they should be released into female‐biased populations, where they have higher ORRs. Our study offers the unique advantage of a long‐term analysis across a large number of replicate populations—a science‐by‐management experiment as a proxy for a manipulative experiment, and a rare opportunity, particularly for a large, critically endangered taxon such as the black rhinoceros. Our findings differ from previous recommendations, reinforce the importance of long‐term data sets and comprehensive metrics of translocation success, and suggest attention be shifted from ecological to social constraints on population growth and species recovery, particularly when translocating species with polygynous breeding systems.  相似文献   

8.
A 34-kilometer reach of the Virgin River, Utah-Arizona-Nevada, was poisoned with rotenone in an attempt to eradicate non-native red shiners ( Cyprinella lutrensis ), a species implicated in the decline of native fish populations in the American West. An error in detoxification resulted in lethal concentrations of piscicide passing through an additional 50 kilometers of stream. We used allozyme electrophoresis to analyze genetic variation among pre- and post-poison samples of endangered Virgin River chubs ( Gila seminuda ). Pre-poison samples indicated a single panmictic population in the river. In contrast, fish subsequently produced through natural recruitment in poisoned reaches exhibited deviations from the original pattern of genetic variation. A genetic bottleneck caused by severe reduction in the number of spawning adults was indicated. The altered pattern persisted 2.5 years post-poisoning, indicating unexpectedly slow recolonization from the unpoisoned reach upstream. Genetic variation among hatchery-produced young was similarly unrepresentative of the original pattern because of the small number of brood fish used in propagation. Because of their small numbers and/or restricted distribution, endangered species are particularly vulnerable to natural or anthropogenic catastrophes. Assessment of the genetic impact of such events is essential but requires that baseline data are available.  相似文献   

9.
Translocation is used to reestablish wild populations of animals, but translocation projects often do not meet their objectives because postrelease mortality of animals is high. One reason for translocation failure is that the behavioral or ecological requirements of released animals are unmet. Maintaining founder-group social relationships during release can affect reestablishment of social species. Solitary territorial species with stable neighbors (restricted dispersal and lifetime occupation of a home range) of the same species may also benefit from the maintenance of these social relationships during translocation. We translocated Stephens' kangaroo rats (Dipodomys stephensi), a solitary species listed as endangered under the U.S. Endangered Species Act, with and without neighboring kangaroo rats. We compared the settlement (establishment of a stable home range) decisions and fitness of kangaroo rats between the 2 treatments. Kangaroo rats translocated with neighbors traveled shorter distances before establishing territories, had higher survival rates, and had significantly higher reproductive success than kangaroo rats translocated without neighbors. Number of offspring was 24-fold higher for kangaroo rats translocated with neighbors than those translocated without neighbors. Differences in behavior following release may partially explain differences in survival between the 2 groups. Immediately following release, animals translocated with neighbors fought less and spent significantly more time foraging and digging burrows than animals translocated without neighbors. Our results indicate that even for solitary species, maintaining relationships among members of a translocated group of animals can influence translocation success. This study is the first empirical demonstration of the fitness consequences of disrupting social relationships among territorial neighbors.  相似文献   

10.
The use of conservation translocations to mitigate human effects on biodiversity is increasing, but how these efforts are allocated remains unclear. Based on a comprehensive literature review and online author survey, we sought to determine the goals of translocation efforts, whether they focus on species and regions with high threat and likelihood of perceived success, and how success might be improved. We systematically searched the ISI Web of Knowledge and Academic Search Complete databases to determine the species and regions of conservation translocations and found 1863 articles on conservation translocations in the United States, Canada, Mexico, Central America, and Caribbean published from 1974 to 2013. We questioned 330 relevant authors to determine the motivation for translocations, how translocations were evaluated, and obstacles encountered. Conservation translocations in North America were geographically widespread (in 21 countries), increased in frequency over time for all animal classes (from 1 in 1974 to 84 in 2013), and included 279 different species. Reintroductions and reinforcements were more common in the United States than in Canada and Mexico, Central America, or the Caribbean, and their prevalence was correlated with the number of species at risk at national and state or provincial levels. Translocated species had a higher threat status at state and provincial levels than globally (International Union for Conservation of Nature Red List categorization), suggesting that translocations may have been motivated by regional priorities rather than global risk. Our survey of authors was consistent with these results; most translocations were requested, supported, or funded by government agencies and downlisting species at national or state or provincial levels was the main goal. Nonetheless, downlisting was the least reported measure of success, whereas survival and reproduction of translocated individuals were the most reported. Reported barriers to success included biological factors such as animal mortality and nonbiological factors, such as financial constraints, which were less often considered in the selection of release sites. Our review thus highlights discrepancies between project goals and evaluation criteria and between risk factors considered and obstacles encountered, indicating room to further optimize translocation projects.  相似文献   

11.
Translocations are an important tool for wildlife conservation, although progress in the field of reintroduction biology has been hindered by the ad hoc and opportunistic nature of many translocations. We used an experimental translocation to elucidate the role of raccoon roundworm (Baylisascaris procyonis) and inbreeding depression in the decline of the Allegheny woodrat (Neotoma magister), an endangered species. We translocated woodrats from genetically diverse populations in the core of the species range to 4 previously occupied sites (reintroductions) and 2 sites supporting genetically depauperate populations (reinforcements) in Indiana (U.S.A.). In 2 reintroduction sites and 1 reinforcement site, we distributed anthelmintic baits to passively deworm raccoons and reduce the risk of woodrat exposure to roundworms. The remaining sites served as controls. We used raccoon latrine surveys and fecal flotation to monitor temporal variability in roundworm prevalence and effect of treatment. We used live trapping and microsatellite genotyping to monitor the demographic and genetic response of translocated populations over the following 54 months. At the conclusion of the study, 4 of 6 translocations were successfully maintaining abundance through local recruitment. The distribution of anthelmintic baits reduced levels of roundworm contamination, but levels of contamination were also low in 2 of 3 control sites. Reintroductions failed at control sites, one of which was due to high roundworm exposure. The other failed control reintroduction was likely attributable to demographic stochasticity and limited reproductive potential following initial mortality within the first 4 months. In both control and treatment reinforcements, increases in both allelic richness and heterozygosity were accompanied by increases in abundance, which is suggestive of genetic rescue. Our results demonstrate that mitigation of roundworm exposure through the distribution of anthelmintic baits can facilitate woodrat recovery and that diversity within genetically depauperate populations can be restored through the introduction of a limited number of individuals. El Uso de Reubicaciones Experimentales de Neotoma magister para Descifrar Agentes Causales de Disminución  相似文献   

12.
Predicting and preventing outbreaks of infectious disease in endangered wildlife is problematic without an understanding of the biotic and abiotic factors that influence pathogen transmission and the genetic variation of microorganisms within and between these highly modified host communities. We used a common commensal bacterium, Campylobacter spp., in endangered Takahe (Porphyrio hochstetteri) populations to develop a model with which to study pathogen dynamics in isolated wildlife populations connected through ongoing translocations. Takahe are endemic to New Zealand, where their total population is approximately 230 individuals. Takahe were translocated from a single remnant wild population to multiple offshore and mainland reserves. Several fragmented subpopulations are maintained and connected through regular translocations. We tested 118 Takahe from 8 locations for fecal Campylobacter spp. via culture and DNA extraction and used PCR for species assignment. Factors relating to population connectivity and host life history were explored using multivariate analytical methods to determine associations between host variables and bacterial prevalence. The apparent prevalence of Campylobacter spp. in Takahe was 99%, one of the highest reported in avian populations. Variation in prevalence was evident among Campylobacter species identified. C. sp. nova 1 (90%) colonized the majority of Takahe tested. Prevalence of C. jejuni (38%) and C. coli (24%) was different between Takahe subpopulations, and this difference was associated with factors related to population management, captivity, rearing environment, and the presence of agricultural practices in the location in which birds were sampled. Modeling results of Campylobacter spp. in Takahe metapopulations suggest that anthropogenic management of endangered species within altered environments may have unforeseen effects on microbial exposure, carriage, and disease risk. Translocation of wildlife between locations could have unpredictable consequences including the spread of novel microbes between isolated populations.  相似文献   

13.
Plant translocation is a useful tool for implementing assisted gene flow in recovery plans of critically endangered plant species. Although it helps to restore genetically viable populations, it is not devoid of genetic risks, such as poor adaptation of transplants and outbreeding depression in the hybrid progeny, which may have negative consequences in terms of demographic growth and plant fitness. Hence, a follow-up genetic monitoring should evaluate whether the translocated populations are genetically viable and self-sustaining in the short and long term. The causes of failure to adjust management responses also need to be identified. Molecular markers and fitness-related quantitative traits can be used to determine whether a plant translocation enhanced genetic diversity, increased fitness, and improved the probability of long-term survival. We devised guidelines and illustrated them with studies from the literature to help practitioners determine the appropriate genetic survey methods so that management practices can better integrate evolutionary processes. These guidelines include methods for sampling and for assessing changes in genetic diversity and differentiation, contemporary gene flow, mode of local recruitment, admixture level, the effects of genetic rescue, inbreeding or outbreeding depression and local adaptation on plant fitness, and long-term genetic changes.  相似文献   

14.
The intentional translocation of animals is an important tool for species conservation and ecosystem restoration, but reported success rates are low, particularly for threatened and endangered species. Publication bias further distorts success rates because the results of successful translocations may be more likely to be published than failed translocations. We conducted the first comprehensive review of all published and unpublished translocations of herpetofauna in New Zealand to assess publication bias. Of 74 translocations of 29 species in 25 years, 35 have been reported in the published literature, and the outcomes of 12 have been published. Using a traditional definition of success, publication bias resulted in a gross overestimate of translocation success rates (41.7% and 8.1% for published and all translocations, respectively), but bias against failed translocations was minimal (8.3% and 6.8%, respectively). Publication bias against translocations with uncertain outcomes, the vast majority of projects, was also strong (50.0% and 85.1% for published and all translocations, respectively). Recent translocations were less likely to be published than older translocations. The reasons behind translocations were related to publication. A greater percentage of translocations for conservation and research were published (63.3% and 40.0%, respectively) than translocations for mitigation during land development (10.0%). Translocations conducted in collaboration with a university were more frequently published (82.7% and 24.4%, respectively). To account for some of this publication bias, we reassessed the outcome of each translocation using a standardized definition of success, which takes into consideration the species’ life history and the time since release. Our standardized definition of translocation success provided a more accurate summary of success rates and allows for a more rigorous evaluation of the causes of translocation success and failure in large‐scale reviews. Entendiendo el Sesgo de Publicaciones en la Biología de la Reintroducción Mediante el Estudio de Traslocaciones de la Herpetofauna de Nueva Zelanda  相似文献   

15.
The continuing decline and loss of biodiversity has caused an increase in the use of interventionist conservation tools, such as translocation. However, many translocation attempts fail to establish viable populations, with poor release site selection often flagged as an inhibitor of success. We used species distribution models (SDMs) to predict the climate suitability of 102 release sites for amphibians, reptiles, and terrestrial insects and compared suitability predictions between successful and failed attempts. We then quantified the importance of climate suitability relative to 5 other variables frequently considered in the literature as important determinants of translocation success: number of release years, number of individuals released, life stage released, origin of the source population, and position of the release site relative to the species’ range. Probability of translocation success increased as predicted climate suitability increased and this effect was the strongest among the variables we considered, accounting for 48.3% of the variation in translocation outcome. These findings should encourage greater consideration of climate suitability when selecting release sites for conservation translocations and we advocate the use of SDMs as an effective way to do this.  相似文献   

16.
Advancements in the field of reintroduction biology are needed, but understanding of how to effectively conduct translocations, particularly with snakes, is lacking. We conducted a systematic review of snake translocation studies to identify potential tactics for reducing postrelease effects. We included studies on intentional, human-mediated, wild–wild, or captive–wild translocations to any location, regardless of motive or number of snakes translocated. Only studies that presented results for at least 1 of 4 outcomes (movement behavior, site fidelity, survival, or population establishment) were included. We systematically searched 4 databases for published studies and used 5 methods to search the gray literature. Our search and screening criteria yielded 121 data sources, representing 130 translocation cases. We quantified the association between 15 translocation tactics and short-term translocation outcomes by calculating odds ratios and used forest plots to display results. Snake translocations involved 47 species (from mainly 2 families), and most were motivated by research, were monitored for at least 6 months, occurred in North America, and took place from the 1990s onward. The odds of a positive snake translocation outcome were highest with release of captive reared or juvenile snakes, release of social groups together, delayed release, provision of environmental enrichment or social housing before release, or minimization of distance translocated. The odds of a positive outcome were lowest when snakes were released early in their active season. Our results do not demonstrate causation, but outcomes of snake translocation were associated with 8 tactics (4 of which were strongly correlated). In addition to targeted comparative studies, we recommend practitioners consider the possible influence of these tactics when planning snake translocations.  相似文献   

17.
The Gila topminnow (Poeciliopsis o. occidentalis) is a small, live-bearing, endangered fish extant in a maximum of nine locales in four separate watersheds in the United States. To determine if these populations differed in their fitness, we obtained samples from the four watersheds and examined them for four fitness correlates: survival, growth rate, fecundity, and bilateral asymmetry. Earlier research found that one population, Sharp Spring, had higher allozyme heterozygosity than the other three and had higher survival, growth rate, and fecundity and lower bilateral asymmetry than a sample from one of the other populations with no polymorphic allozyme loci, Monkey Spring. We also verified that Sharp Spring fish were polymorphic for the same allozyme loci whereas the Monkey Spring population was not. We did not, however, find positive associations of allozyme heterozygosity with the four fitness correlates for the four samples. Because the earlier study had much lower survival, it is likely that the differences resulted from differential response of the two populations to a stressful laboratory environment. Whether this unknown stress occurs in natural environments or its effect is predictive of other stresses remains unresolved. As a result, we concur with suggestions in the draft recovery plan that topminnows from nearby sources be used for reintroductions and that the Sharp Spring stock not be used outside the upper Santa Cruz River drainage.  相似文献   

18.
Trouts native to the American Southwest provide an excellent example of the plight of endangered fishes from this region. The native species, Apache trout and Gila trout ( Oncorhynchus apache and O. gilae , respectively) have faced drastic reduction in habitat and detrimental interactions with introduced species, resulting in a dramatic decrease in numbers and sizes of populations. We used biochemical methods to identify diagnostic markers for the estimation of genetic relatedness and analysis of hybridization among native trouts and introduced cutthroat and rainbow trouts ( O. clarki and O. mykiss , respectively). Restriction endonuclease analysis of mitochondrial DNA (mtDNA) indicated that Apache and Gila trout were very similar to each other, and more similar to rainbow trout than cutthroat. Diagnostic allozyme marker loci indicated that Apache trout hybridized extensively with rainbows in four populations and provided no evidence for reproductive isolation between the forms. Analysis of mtDNA, however, indicated that introduced haplotypes were rare in these same individuals, identifying a bias in the direction of gene exchange between species. The potential reproductive isolation and lack of information concerning population structure necessitate further study of Apache trout to determine the appropriate management strategy for this threatened species. This case demonstrates that extreme care must be exercised when considering elimination of any contaminated population lest the unique genetic identity of the native taxon be lost forever.  相似文献   

19.
The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision‐tree models for species’ translocation, we used data on the short‐term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision‐tree algorithms (decision tree, decision‐tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. Minimizar el Costo del Fracaso de la Reubicación con Modelos de Árboles de Decisión que Predigan la Respuesta Conductual de la Especie en los Sitios de Reubicación  相似文献   

20.
Avian and Mammalian Translocations: Update and Reanalysis of 1987 Survey Data   总被引:12,自引:1,他引:12  
In 1993 we conducted a follow-up study of the 1987 survey by Griffith et al. (1989) of 421 avian and mammalian translocation programs in North America, Australia, and New Zealand to reassess the programs' status and the biological and methodological factors associated with success. Our survey response rate was 81%. Approximately 38% of usable programs in 1993 reported a change in outcome from 1987 (e.g., a translocated population was "declining" but now is "self-sustaining"), but the difference between the overall success rates was not statistically significant (66% in 1987 and 67% in 1993). Since 1987, an increase was observed in the median number of animals translocated per program (31.5 to 50.5), median duration of releases (2 to 3 years), and proportion of programs releasing more than 30 animals (46% to 68%). Multiple logistic regression analyses indicated that release into the core of the historical range, good-to-excellent habitat quality, native game species, greater numbers of released animals, and an omnivorous diet were positively associated with translocation success. Moreover, our results indicate that translocated birds were less successful at establishing self-sustaining populations than translocated mammals. Our findings, using comparable logistic analyses, generally corroborate the results of Grifftth et al. (1989). Variables not found to be significantly correlated with translocation success include species' reproductive potential (number of offspring and first age of reproduction), number and duration of the releases, and source of the translocated animals (wild-caught versus captive-reared).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号