首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
Abstract:  The limited availability of resources for conservation has led to the development of many quantitative methods for selecting reserves that aim to maximize the biodiversity value of reserve networks. In published analyses, species are often considered equal, although some are in much greater need of protection than others. Furthermore, representation is usually treated as a threshold: a species is either represented or not, but varying levels of representation over or under a given target level are not valued differently. We propose that a higher representation level should also have higher value. We introduce a framework for reserve selection that includes species weights and benefit functions for under- and overrepresentation (number of locations for each species). We applied the method to conservation planning for herb-rich forests in southern Finland. Our use of benefit functions and weighting changed the identity of about 50% of the selected sites at different funding levels and improved the representation of rare and threatened species. We also identified a small area of additional land that would substantially enhance the existing reserve network. We suggest that benefit functions and species weighting should be considered as standard options in reserve-selection applications.  相似文献   

2.
Spatially explicit information on species distributions for conservation planning is invariably incomplete; therefore, the use of surrogates is required to represent broad‐scale patterns of biodiversity. Despite significant interest in the effectiveness of surrogates for predicting spatial distributions of biodiversity, few researchers have explored questions involving the ability of surrogates to incidentally represent unknown features of conservation interest. We used the Great Barrier Reef marine reserve network to examine factors affecting incidental representation of conservation features that were unknown at the time the reserve network was established. We used spatially explicit information on the distribution of 39 seabed habitats and biological assemblages and the conservation planning software Marxan to examine how incidental representation was affected by the spatial characteristics of the features; the conservation objectives (the minimum proportion of each feature included in no‐take areas); the spatial configuration of no‐take areas; and the opportunity cost of conservation. Cost was closely and inversely correlated to incidental representation. However, incidental representation was achieved, even in a region with only coarse‐scale environmental data, by adopting a precautionary approach that explicitly considered the potential for unknown features. Our results indicate that incidental representation is enhanced by partitioning selection units along biophysical gradients to account for unknown within‐feature variability and ensuring that no‐take areas are well distributed throughout the region; by setting high conservation objectives that (in this case >33%) maximize the chances of capturing unknown features incidentally; and by carefully considering the designation of cost to planning units when using decision‐support tools for reserve design. The lessons learned from incidental representation in the Great Barrier Reef have implications for conservation planning in other regions, particularly those that lack detailed environmental and ecological data.  相似文献   

3.
World governments have committed to increase the global protected areas coverage by 2020, but the effectiveness of this commitment for protecting biodiversity depends on where new protected areas are located. Threshold‐ and complementarity‐based approaches have been independently used to identify important sites for biodiversity. We brought together these approaches by performing a complementarity‐based analysis of irreplaceability in important bird and biodiversity areas (IBAs), which are sites identified using a threshold‐based approach. We determined whether irreplaceability values are higher inside than outside IBAs and whether any observed difference depends on known characteristics of the IBAs. We focused on 3 regions with comprehensive IBA inventories and bird distribution atlases: Australia, southern Africa, and Europe. Irreplaceability values were significantly higher inside than outside IBAs, although differences were much smaller in Europe than elsewhere. Higher irreplaceability values in IBAs were associated with the presence and number of restricted‐range species; number of criteria under which the site was identified; and mean geographic range size of the species for which the site was identified (trigger species). In addition, IBAs were characterized by higher irreplaceability values when using proportional species representation targets, rather than fixed targets. There were broadly comparable results when measuring irreplaceability for trigger species and when considering all bird species, which indicates a good surrogacy effect of the former. Recently, the International Union for Conservation of Nature has convened a consultation to consolidate global standards for the identification of key biodiversity areas (KBAs), building from existing approaches such as IBAs. Our results informed this consultation, and in particular a proposed irreplaceability criterion that will allow the new KBA standard to draw on the strengths of both threshold‐ and complementarity‐based approaches.  相似文献   

4.
Geodiversity has been used as a surrogate for biodiversity when species locations are unknown, and this utility can be extended to situations where species locations are in flux. Recently, scientists have designed conservation networks that aim to explicitly represent the range of geophysical environments, identifying a network of physical stages that could sustain biodiversity while allowing for change in species composition in response to climate change. Because there is no standard approach to designing such networks, we compiled 8 case studies illustrating a variety of ways scientists have approached the challenge. These studies show how geodiversity has been partitioned and used to develop site portfolios and connectivity designs; how geodiversity‐based portfolios compare with those derived from species and communities; and how the selection and combination of variables influences the results. Collectively, they suggest 4 key steps when using geodiversity to augment traditional biodiversity‐based conservation planning: create land units from species‐relevant variables combined in an ecologically meaningful way; represent land units in a logical spatial configuration and integrate with species locations when possible; apply selection criteria to individual sites to ensure they are appropriate for conservation; and develop connectivity among sites to maintain movements and processes. With these considerations, conservationists can design more effective site portfolios to ensure the lasting conservation of biodiversity under a changing climate.  相似文献   

5.
Abstract:   Museum records have great potential to provide valuable insights into the vulnerability, historic distribution, and conservation of species, especially when coupled with species-distribution models used to predict species' ranges. Yet, the increasing dependence on species-distribution models in identifying conservation priorities calls for a more critical evaluation of model robustness. We used 11 bird species of conservation concern in Brazil's highly fragmented Atlantic Forest and data on environmental conditions in the region to predict species distributions. These predictions were repeated for five different model types for each of the 11 bird species. We then combined these species distributions for each model separately and applied a reserve-selection algorithm to identify priority sites. We compared the potential outcomes from the reserve selection among the models. Although similarity in identification of conservation reserve networks occurred among models, models differed markedly in geographic scope and flexibility of reserve networks. It is essential for planners to evaluate the conservation implications of false-positive and false-negative errors for their specific management scenario before beginning the modeling process. Reserve networks selected by models that minimized false-positive errors provided a better match with priority areas identified by specialists. Thus, we urge caution in the use of models that overestimate species' occurrences because they may misdirect conservation action. Our approach further demonstrates the great potential value of museum records to biodiversity studies and the utility of species-distribution models to conservation decision-making. Our results also demonstrate, however, that these models must be applied critically and cautiously.  相似文献   

6.
Abstract:  Reserve selection often concerns the design of reserve networks for the long-term maintenance of biodiversity. We considered uncertainty in the context of three common reserve-selection formulations, the expected number of populations, proportional coverage of land-cover types, and the probability of having at least one population. By uncertainty, we mean variance in the outcome of any probability-based reserve selection formulation. A typical reserve-selection formulation might ask for the least expensive set of sites that contains n populations per species. It is implicit here that this requirement concerns the expected number of populations, which actually is obtained only with a 50% chance. If the requirement is changed to select the least expensive set of sites that gives n populations per species with a 95% probability, the number of sites required in the solution increases and the identity of the sites is changed toward sites that have high probabilities of persistence (or occurrence) and low associated binomial variance. Anthropogenic threat is one factor that may cause probabilistic uncertainty in the context of proportional area coverage.  相似文献   

7.
Irreplaceability is a concept used to describe how close a site is to being essential for achieving conservation targets. Current methods for measuring irreplaceability are based on representative combinations of sites, giving them an extrinsic nature and exponential computational requirements. Surrogate measures based on efficiency (complementarity) are often used as alternatives, but they were never intended for this purpose and do not measure irreplaceability. Current approaches used to estimate irreplaceability have key limitations. Some of these are a result of the tools used, but some are due to the nature of the current definition of irreplaceability. For irreplaceability to be stable and useful for conservation purposes and to resolve limitations, irreplaceability measures should adhere to five axioms; baseline coherence, monotonic responsiveness, proportional responsiveness, intrinsic stability, and bounded outputs. We designed a robust method for measuring a site's proximity to irreplaceability that adheres to these requirements and used it to develop the first systematic global map of irreplaceability based on data for terrestrial vertebrates (n = 29,837 species, >1 million grid cells). At least 3.5% of land surface was highly irreplaceable, and 47.6% of highly irreplaceable cells were contained in 12 countries. More generous thresholds of irreplaceability flag greater portions of land surface that would still be realistic to protect under current global objectives. Irreplaceable sites should form a critical component of any global conservation plan and should be part of the UN Convention on Biological Diversity's post2020 Global Biodiversity Framework strategy, forming part of the 30% protection by 2030 target that is gaining support. The reliable identification of irreplaceable sites will be crucial to halting extinctions.  相似文献   

8.
9.
10.
Abstract:  Distribution data on biodiversity features is a major component of conservation planning that are often inaccurate; thus, the true distribution of each feature is commonly over- or underrepresented. The selection of distribution data sets may therefore lead to variability in the spatial configuration and size of proposed reserve networks and uncertainty regarding the extent to which these networks actually contain the biodiversity features they were identified to protect. Our goals were to investigate the impact on reserve selection of choosing different distribution data sets and to propose novel methods to minimize uncertainty about target attainment within reserves. To do so, we used common prioritization methods (richness mapping, systematic reserve design, and a novel approach that integrates multiple types of distribution data) and three types of data on the distribution of mammals (predicted distribution models, occurrence records, and a novel combination of the two) to simulate the establishment of regional biodiversity reserves for the state of Arizona (U.S.A.). Using the results of these simulations, we explored variability in reserve placement and size as a function of the distribution data set. Spatial overlap of reserve networks identified with only predicted distribution data or only occurrence distribution data never exceeded 16%. In pairwise comparisons between reserves created with all three types of distribution data, overlap never achieved 50%. The reserve size required to meet conservation targets also varied with the type of distribution data used and the conservation goal; the largest reserve system was 10 times the smallest. Our results highlight the impact of employing different types of distribution data and identify novel tools for application to existing distribution data sets that can minimize uncertainty about target attainment.  相似文献   

11.
The Adriatic and Ionian Region is an important area for both strategic maritime development and biodiversity conservation in the European Union (EU). However, given that both EU and non‐EU countries border the sea, multiple legal and regulatory frameworks operate at different scales, which can hinder the coordinated long‐term sustainable development of the region. Transboundary marine spatial planning can help overcome these challenges by building consensus on planning objectives and making the trade‐offs between biodiversity conservation and its influence on economically important sectors more explicit. We address this challenge by developing and testing 4 spatial prioritization strategies with the decision‐support tool Marxan, which meets targets for biodiversity conservation while minimizing impacts to users. We evaluated these strategies in terms of how priority areas shift under different scales of target setting (e.g., regional vs. country level). We also examined the trade‐off between cost‐efficiency and how equally solutions represent countries and maritime industries (n = 14) operating in the region with the protection‐equality metric. We found negligible differences in where priority conservation areas were located when we set targets for biodiversity at the regional versus country scale. Conversely, the prospective impacts on industries, when considered as costs to be minimized, were highly divergent across scenarios and biased the placement of protection toward industries located in isolation or where there were few other industries. We recommend underpinning future marine spatial planning efforts in the region through identification of areas of national significance, transboundary areas requiring cooperation between countries, and areas where impacts on maritime industries require careful consideration of the trade‐off between biodiversity conservation and socioeconomic objectives.  相似文献   

12.
Conserving freshwater habitats and their biodiversity in the Amazon Basin is a growing challenge in the face of rapid anthropogenic changes. We used the most comprehensive fish-occurrence database available (2355 valid species; 21,248 sampling points) and 3 ecological criteria (irreplaceability, representativeness, and vulnerability) to identify biodiversity hotspots based on 6 conservation templates (3 proactive, 1 reactive, 1 representative, and 1 balanced) to provide a set of alternative planning solutions for freshwater fish protection in the Amazon Basin. We identified empirically for each template the 17% of sub-basins that should be conserved and performed a prioritization analysis by identifying current and future (2050) threats (i.e., degree of deforestation and habitat fragmentation by dams). Two of our 3 proactive templates had around 65% of their surface covered by protected areas; high levels of irreplaceability (60% of endemics) and representativeness (71% of the Amazonian fish fauna); and low current and future vulnerability. These 2 templates, then, seemed more robust for conservation prioritization. The future of the selected sub-basins in these 2 proactive templates is not immediately threatened by human activities, and these sub-basins host the largest part of Amazonian biodiversity. They could easily be conserved if no additional threats occur between now and 2050.  相似文献   

13.
Abstract:  Socioeconomic considerations should have an important place in reserve design. Systematic reserve-selection tools allow simultaneous optimization for ecological objectives while minimizing costs but are seldom used to incorporate socioeconomic costs in the reserve-design process. The sensitivity of this process to biodiversity data resolution has been studied widely but the issue of socioeconomic data resolution has not previously been considered. We therefore designed marine reserves for biodiversity conservation with the constraint of minimizing commercial fishing revenue losses and investigated how economic data resolution affected the results. Incorporating coarse-resolution economic data from official statistics generated reserves that were only marginally less costly to the fishery than those designed with no attempt to minimize economic impacts. An intensive survey yielded fine-resolution data that, when incorporated in the design process, substantially reduced predicted fishery losses. Such an approach could help minimize fisher displacement because the least profitable grounds are selected for the reserve. Other work has shown that low-resolution biodiversity data can lead to underestimation of the conservation value of some sites, and a risk of overlooking the most valuable areas, and we have similarly shown that low-resolution economic data can cause underestimation of the profitability of some sites and a risk of inadvertently including these in the reserve. Detailed socioeconomic data are therefore an essential input for the design of cost-effective reserve networks.  相似文献   

14.
Abstract:  Under article 8-J of the Convention on Biological Diversity, governments must engage indigenous and local communities in the designation and management of protected areas. A better understanding of the relationship between community heritage sites and sites identified to protect conventional conservation features could inform conservation-planning exercises on indigenous lands. We examined the potential overlap between Gwich'in First Nations' (Northwest Territories, Canada) heritage sites and areas independently identified for the protection of conventional conservation targets. We designed nine hypothetical protected-area networks with different targets for woodland caribou ( Rangifer tarandus caribou ) habitat, high-quality wetland areas, representative vegetation types, water bodies, environmentally significant area, territorial parks, and network aggregation. We compared the spatial overlap of heritage sites to these nine protected-area networks. The degree of spatial overlap (Jaccard similarity) between heritage sites and the protected-area networks with moderate or high aggregation was significantly higher ( p < 0.001) than random spatial overlap, whereas the overlap between heritage sites and the protected-area networks with no aggregation was not significant or significantly lower ( p < 0.001) than random spatial overlap. Our results suggest that protected-area networks designed to capture conventional conservation features may protect key heritage sites but only if the underlying characteristics of these sites are considered. The Gwich'in heritage sites are highly aggregated and only protected-area networks that had moderate and high aggregation had significant overlap with the heritage sites. We suggest that conventional conservation plans incorporate heritage sites into their design criteria to complement conventional conservation targets and effectively protect indigenous heritage sites .  相似文献   

15.
A major aim of conservation today is the maintenance of biodiversity. Practically, this pursuit might involve protecting a representative sample of the current biotic diversity (where diversity can have a variety of different meanings as in Vane-Wright et al. 1991), safeguarding species with traits that may be correlated with susceptibility to extinction (see International Council for Bird Preservation 1992), or protecting those species that are currently categorized as under short-term threat of extinction. Priority areas for conservation may vary, however, depending on which of these three approaches is taken. We investigated the designation of priority areas using these different approaches for Afrotropical antelope. Sites were selected on the basis of (1) biotic diversity—simple species richness and taxonomic diversity; (2) uniqueness of the fauna relative to other sites—how geographically restricted the component species were; and (3) degree of endangerment of the fauna. When insufficient sites to represent all the species could be selected, there was little agreement between the priority sites selected using the different methods. Sites selected by each approach were also generally poor at representing the diversity components ranked highly by other approaches. Also, many of the species were represented in only one site in the selected network, which on its own probably does not represent a viable population for the species. Therefore, it is important that the precise aims and consequences of any selection procedure be understood. A combination of different approaches, emphasizing different aspects of biodiversity and implemented sequentially, may be the best compromise for preserving a full range of biotic diversity.  相似文献   

16.
The systematic conservation planning literature invariably assumes that the biodiversity features being preserved in sites do not change through time. We develop a conservation planning framework for ecosystems where disturbance events and succession drive vegetation dynamics. The framework incorporates three key attributes of disturbance theory: heterogeneity in disturbance rates, spatial correlation between disturbance events and different impacts of disturbance. In our conservation problem we wish to maximise the chance that we represent a certain number of successional types given a cap on the number of sites we can conserve. Correlation between disturbance events dramatically complicates the problem of choosing the optimal suite of sites. However, in our problem we discover that spatial correlation in disturbances affects the optimal reserve network very little. The reason is twofold: (i) through our probabilistic framework we focus on the long-term effectiveness of reserve networks and (ii) in the dynamics considered in our model the state of a site is not only affected by the most recent (correlated) disturbance event but also by the site's long-term stochastic history which blurs the impact of spatial correlation. If successional states are the conservation target rather than individual species then, conserving a site can only contribute to meeting one target. However, given that correlation of disturbance events may be ignored, we show that if the number of candidate reserves is sufficiently large the statistical dependence of different conservation targets may be ignored, too. We conclude that the computational complexity of reserve selection methods for dynamic ecosystems can be much simpler than they first appear.  相似文献   

17.
Abstract:  Selecting reserve areas based on percentages, such as 10% or 12% of a bioregion, is common in conservation planning despite widespread admission that such percentages are arbitrary and likely to be inadequate for the conservation of all biodiversity. Reserve systems based on these relatively low percentage targets are likely to require expansion in the future, resulting in the assembly of reserve systems over many years (incremental reserve design). How then will incremental reserve design, such as increasing percentage targets over time, affect the long-term efficiency of marine reserve systems? We used South Australia as a case study to investigate how changing percentage targets affects the contribution of individual planning units to efficient reserve design. Selection frequency counts provided a measure of a planning unit's conservation value. For the majority of planning units, changing targets led to a change in their conservation value indicating, for example, that planning units identified as high-value sites at a low-percentage conservation target may be of lesser importance when targets are increased. Despite the variability in the value of individual planning units at different targets, there was no loss in efficiency from incremental design of reserve systems based on systematic methods compared with purpose-built reserve systems (i.e., the system is assembled in a single iteration). The exception was when incrementally designed systems were based on South Australia's existing marine reserve system—a system developed in an ad hoc method. The result was reserve systems that were less efficient, less compact, and larger in size. This suggests that systematic approaches have an important role for efficient reserve design when there is uncertainty about the target level of reservation .  相似文献   

18.
Abstract:  The Iberian Peninsula harbors about 50% of European plant and terrestrial vertebrate species and more than 30% of European endemic species. Despite the global recognition of its importance, the selection of protected areas has been ad hoc and the effectiveness of such choices has rarely been assessed. We compiled the most comprehensive distributional data set of Iberian terrestrial plant and vertebrate species available to date and used it to assess the degree of species representation within existing protected areas. Existing protected areas in Spain and Portugal reasonably represented the plant and animal species we considered (73–98%). Nevertheless, species of some groups (amphibians, reptiles, birds, and gymnosperms) did not accumulate in protected areas at a rate higher than expected by chance ( p > 0.05). We determined that to conserve all vertebrate and plant species in the Iberian Peninsula, at least 36 additional areas are needed. Selection of additional areas for conservation would be facilitated if such areas coincided with sites of community importance (SCI) designated under the European Commission Habitats Directive. Additional areas required for full representation of the selected plant and animal species all coincide with SCI in Spain. Nevertheless, the degree of coincidence varies between 0.3% and 74.6%, and there is a possibility that important areas for conservation occur outside the SCI. Our results support the view that current SCI can be used for prioritization of areas for conservation, but a systematic reevaluation of conservation priorities in Spain and Portugal would be necessary to ensure that effective conservation of one of European's most important biodiversity regions is achieved.  相似文献   

19.
Abstract:  Rapid biodiversity assessment and conservation planning require the use of easily quantified and estimated surrogates for biodiversity. Using data sets from Québec and Queensland, we applied four methods to assess the extent to which environmental surrogates can represent biodiversity components: (1) surrogacy graphs; (2) marginal representation plots; (3) Hamming distance function; and (4) Syrjala statistical test for spatial congruence. For Québec we used 719 faunal and floral species as biodiversity components, and for Queensland we used 2348 plant species. We used four climatic parameter types (annual mean temperature, minimum temperature during the coldest quarter, maximum temperature during the hottest quarter, and annual precipitation), along with slope, elevation, aspect, and soil types, as environmental surrogates. To study the effect of scale, we analyzed the data at seven spatial scales ranging from 0.01° to 0.10° longitude and latitude. At targeted representations of 10% for environmental surrogates and biodiversity components, all four methods indicated that using a full set of environmental surrogates systematically provided better results than selecting areas at random, usually ensuring that ≥90% of the biodiversity components achieved the 10% targets at scales coarser than 0.02°. The performance of surrogates improved with coarser spatial resolutions. Thus, environmental surrogate sets are useful tools for biodiversity conservation planning. A recommended protocol for the use of such surrogates consists of randomly selecting a set of areas for which distributional data are available, identifying an optimal surrogate set based on these areas, and subsequently prioritizing places for conservation based on the optimal surrogate set.  相似文献   

20.
While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号