首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤中重金属形态的化学分析综述   总被引:45,自引:2,他引:45  
土壤中重金属的赋存形态决定其在土壤中的迁移性、生物可利用性以及毒性.土壤中重金属形态的化学分析法是依据不同浸取能力的提取剂分别提取出与土壤颗粒有着不同结合力的化学形态并测定其浓度而建立起来的.文章对土壤重金属形态分析中选用的提取试剂以及分析流程进行了综述,比较了各种试剂和方法的优缺点.同时对形态分析的土壤样品的前处理方式进行了简要概述.  相似文献   

2.
A metal fractionation study on bed sediments of River Narmada in Central India has been carried out to examine the enrichment and partitioning of different metal species between five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction). The river receives toxic substances through a large number of tributaries and drains flowing in the catchment of the river. The toxic substances of particular interest are heavy metals derived from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the river get adsorbed onto the suspended sediments, which in due course of time settle down in the bottom of the river. In this study fractionation of metal ions has been carried out with the objective to determine the eco-toxic potential of metal ions. Although, in most cases (except iron) the average trace/heavy metal concentrations in sediments were higher than the standard shale values, the risk assessment code as applied to the present study reveals that only about 1–3% of manganese, <1% of copper, 16–19% of nickel, 4–20% of chromium, 1–4% of lead, 8–13% of cadmium and 1–3% of zinc exist in exchangeable fraction and therefore falls under low to medium risk category. According to the Geo-accumulation Index (GAI), cadmium shows high accumulation in the river sediments, rest of other metals are under unpolluted to moderately polluted class.  相似文献   

3.
Concentrations of Cd, Cr, Ni, Pb, and Zn in the top-(0–10 cm) and sub-surface (10–20 cm) soils of the Talcahuano urban area were measured. The main soil properties (organic matter, CaCO3, pH, particle sizes) were determined for a network of representative sampling sites. The mean Cr, Ni, Pb, and Zn contents in the urban topsoil samples from Talcahuano (37.8, 22.6, 35.2, 333 mg kg−1, respectively) were compared with mean concentrations for other cities around the world. The results revealed higher concentrations of heavy metals in topsoil samples than in sub-surface samples. The samples from IS1, IS2, and IS3, located in the Talcahuano industrial park, had higher Cr, Ni, Pb, and Zn contents than did samples from the other sites. This was probably due to local pollution by industrial (metallurgical) dust, although other diffuse pollution throughout the entire port region (shipyards, metallurgy, the dismantling of old ships), and contributions from the wind from adjacent industrial, storage, and vessel areas clearly played a role. Heavy metals were lowest in the sample taken on school grounds (SG).  相似文献   

4.
Levels and speciation of heavy metals in soils of industrial Southern Nigeria   总被引:10,自引:0,他引:10  
A knowledge of the total content of trace metals is not enoughto fully assess the environmental impact of polluted soils. Forthis reason, the determination of metal species in solution isimportant to evaluate their behaviour in the environment andtheir mobilization capacity. Sequential extraction procedure wasused to speciate five heavy metals (Cd, Pb, Cu, Ni and Zn) fromfour contaminated soils of Southern Nigeria into sixoperationally defined geochemical species: water soluble,enchangeable, carbonates, Fe-Mn oxide, organic and residual.Metal recoveries were within ± 10% of the independentlydetermined total Cd, Pb, Cu, Ni and Zn concentrations. The highest amount of Cd (avg. 30%) in the nonresidual fractionswas found in the exchangeable fraction, while Cu and Zn weresignificantly associated with the organic fraction. Thecarbonate fraction contained on average 14, 18.6, 12.6, 13 and11% and the residual fraction contained on average 47, 18, 33,50 and 25% of Cd, Pb, Cu, Ni and Zn respectively. Assuming thatmobility and bioavailability of these metals are related to thesolubility of the geochemical form of the metals, and that theydecrease in the order of extraction sequence, the apparentmobility and potential bioavailability for these five metals inthe soil were: Pb > Zn > Cu > Ni > Cd. The mobility indexes ofcopper and nickel correlated positively and significantly withthe total content of metals, while mobility indexes of cadmiumand zinc correlated negatively and significantly with the totalcontent of metals.  相似文献   

5.
This work describes the results of assessment of the heavy metals, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in urban soil of Guwahati City, India from 31 sites of five different land use types covering residential, commercial, industrial, public utilities, and roadside. Sequential extraction procedure was used to evaluate the relative distribution of the eight metals in exchangeable, carbonate, reducible (Fe?CMn oxide), organic and sulfide, and residual fractions. Of the eight metals, Cd and Co occur in lower concentrations (Cd <?< Co) in all types of land, and concentration variation from one type of land use to another is not much significant for both the metals. Ni presence is more than Co, and the concentrations show some variation depending on land use status. Average Cr and Cu concentrations are ??100?mg/kg, but Cr has a significantly higher presence in industrial land use. The results are similar in case of Pb. The two metals, Mn and Zn have domination over the other metals, and the values are ??300?mg/kg. Industrial and roadside soil contains much more Mn, while commercial soil is most enriched with Zn. Of the metals, Ni has the largest proportion (~42%) bound to the exchangeable fraction and Co, Cr, and Pb also have appreciable proportion bound to the same fraction. A significant amount of Co is associated with carbonates. The reducible fraction has bound considerable quantity of Mn and Zn, while most of Cu is associated with the organic and sulfide fraction. Both Cd and Pb are dominantly associated with the residual fraction. Computation of the mobility factor of the metals indicates Mn to be the most mobile metal present in the soil samples.  相似文献   

6.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

7.
Accurate characterization of heavy-metal contaminated areas and quantification of the uncertainties inherent in spatial prediction are crucial for risk assessment, soil remediation, and effective management recommendations. Topsoil samples (0–15 cm) (n = 547) were collected from the Zhangjiagang suburbs of China. The sequential indicator co-simulation (SIcS) method was applied for incorporating the soft data derived from soil organic matter (SOM) to simulate Hg concentrations, map Hg contaminated areas, and evaluate the associated uncertainties. High variability of Hg concentrations was observed in the study area. Total Hg concentrations varied from 0.004 to 1.510 mg kg−1 and the coefficient of variation (CV) accounts for 70%. Distribution patterns of Hg were identified as higher Hg concentrations occurred mainly at the southern part of the study area and relatively lower concentrations were found in north. The Hg contaminated areas, identified using the Chinese Environmental Quality Standard for Soils critical values through SIcS, were limited and distributed in the south where the SOM concentration is high, soil pH is low, and paddy soils are the dominant soil types. The spatial correlations between Hg and SOM can be preserved by co-simulation and the realizations generated by SIcS represent the possible spatial patterns of Hg concentrations without a smoothing effect. Once the Hg concentration critical limit is given, SIcS can be used to map Hg contaminated areas and quantitatively assess the uncertainties inherent in the spatial prediction by setting a given critical probability and calculating the joint probability of the obtained areas.  相似文献   

8.
The Odiel salt marshes (Marismas del Odiel) are an important nature area declared a Biosphere Reserve, but they are greatly affected by pollution from the Odiel River. Surface sediments from this area were analysed using the latest version of the BCR sequential extraction procedure to determine the fractionation of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn among four geochemical phases (acid-soluble, reducible, oxidisable and residual). The total content of each of the metals and As was also determined. The results showed high concentrations of As, Cd, Cu, Pb and Zn, with maximums of 791 mg kg−1 of As, 8.5 mg kg−1 of Cd, 2,740 mg kg−1 of Cu, 1,580 mg kg−1 of Pb and 3,920 mg kg−1 of Zn. The concentrations of Cr, Mn and Ni were low since there are no sources of pollution by them in the area. A comparison of the metal and As levels with the sediment quality guidelines showed that the pollution is sufficient to produce noxious effects in aquatic organisms in most of the Odiel salt marshes. Based on the chemical distribution of the elements, it was found that Cd and Zn were the most mobile (i.e., elements that can pass easily into the water under changing environmental conditions). However, Cr, Fe, Ni and As were present in the greatest percentages in the residual fraction, which implies that these elements are strongly linked to the sediments.  相似文献   

9.
广州地区秋冬季细颗粒物PM2.5化学组分分析   总被引:1,自引:0,他引:1  
分析了广州地区2009年-2010年秋冬季节大气中PM2.5样品的水溶性离子、重金属元素、有机碳/元素碳(OC/EC)、多环芳烃质量浓度和粒径分布。初步掌握了广州地区秋冬季节大气中PM2.5的化学组分和特点,有机质(OM)是广州地区秋冬季PM2.5中最主要的成分,其次是硫酸根离子、硝酸根离子和铵根;PM2.5中有机碳和元素碳的空间分布特征相似,并受一次源排放影响;PM2.5中的重金属含量以铝、锌、铅相对较高,且城区高于城郊;PM2.5中17种多环芳烃、苯并( a)芘( BaP)的浓度均为城郊高于市区。  相似文献   

10.
Wetland sediments are generally considered as a sink for metals and, in the anoxic zone, may contain very high concentrations of heavy metals in reduced state. A comprehensive study was carried out to compare the differences of total, environmentally available (Env-Av), HOAC, EDTA and DTPA available heavy metal fraction in tailing of the marshy area of a copper tailing pond and the dry tailing. The average concentrations of all the seven metals in the wetland tailing were found higher than dry tailing. Regarding pH, organic carbon, availailable N, P and K also found higher in marshy wetland tailing compare to the dry tailing. This information is needed in order to understand wetland system and to assure that wetlands do not themselves eventually become sources of metal contamination to surrounding areas. But as levels of pollutants increases, the ability of a wetland system to incorporate waste can be impaired and the wetland can become a source of toxicity.  相似文献   

11.
钻井废泥浆中重金属化学形态及潜在生态效应评价   总被引:2,自引:0,他引:2  
利用化学萃取法对江苏9个油田的不同类型钻井废泥浆的重金属化学形态分布特征进行调查分析,同时选用Hakanson的潜在生态危害指数法对钻井废泥浆中的重金属总量进行生态效应评价。结果表明,钻井废泥浆中Cu、Pb、Zn、Cd、Cr主要以残渣态和有机结合态为主,活性形态含量较低;采用Hakanson的潜在生态危害指数进行评价,发现Cu、Pb、Zn、Cd都属于轻微生态危害水平,而Cr多属于中等水平,产生潜在生态危害的重金属主要为Cr。  相似文献   

12.
广州市灰霾期PM10的化学组成对能见度的影响   总被引:1,自引:0,他引:1  
采集广州市大气可吸入颗粒物(PM10)样品,并分别对冬、夏两季灰霾和非灰霾期PM10中有机碳(OC)、元素碳(EC)和水溶性离子进行分析。广州市灰霾期大气PM10中的主要化学成分按质量浓度大小排序为OC>NO3->SO24->NH4+>EC(非灰霾期则依次为OC>SO24->EC>NH4+>NO3-),其质量浓度分别为非灰霾期的4.7、12.5、3.7、3.2和2.3倍。相关性分析表明,灰霾期总碳[TC(OC+EC)]及NO3-的质量浓度对大气能见度的降低起主要作用,而非灰霾期则主要是TC和SO24-。  相似文献   

13.
14.
城市土壤重金属污染研究现状与趋势   总被引:14,自引:7,他引:14  
阐述了城市土壤重金属的主要来源、空间分布特征、化学形态与影响因素,以及对人体的健康风险与生物效应,指出今后的研究重点与趋势是建立城市土壤重金属污染概念和标准体系,研究其在环境中的迁移转化机制与规律及城市土壤重金属复合污染,发展判源分析新技术.  相似文献   

15.
A new approach to performing an accelerated sequential extraction of trace elements from solid samples has been proposed. It has been shown that rotating coiled columns (RCC) earlier used in counter-current chromatography can be successfully applied to the dynamic leaching of heavy metals from soils and sediments. A solid sample was retained in the rotating column as the stationary phase under the action of centrifugal forces while different eluents (aqueous solutions of complexing reagents, mineral salts and acids) were continuously pumped through. The procedure developed is time saving and requires only 4-5 h instead of the several days needed for traditional sequential extraction (TSE), complete automation being possible. Losses of solid sample are minimal. In most cases the recoveries of readily bioavailable and leachable forms of Pb, Zn, and Cd are higher, if a dynamic extraction in RCC is used. Since naturally occurring processes are always dynamic, continuous extraction in RCC may help to estimate the contents of leachable forms and their potential risk for the environment more correctly than batch TSE. The Kersten-Foerstner and McLaren-Crawford leaching schemes have been compared, the former has been found to be preferable.  相似文献   

16.
The heavy metal concentrations of soil and dust samples from roadside, residential areas, parks, campus sport grounds, and commercial sites were studied in Guangzhou, South China. Heavy metals in samples were determined by inductively coupled plasma atomic emission spectrophotometer following acidic digestion with HClO4 + HF + HNO3. High concentrations, especially of Cd, Pb, and Zn, were found with mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the urban dusts being 4.22?±?1.21, 62.2?±?27.1, 116?±?30, 31.9?±?12.6, 72.6?±?17.9, and 504?±?191 mg/kg dry weight, respectively. The respective levels in urban soils (0.23?±?0.19, 22.4?±?13.8, 41.6?±?29.4, 11.1?±?5.3, 65.4?±?40.2, and 277?±?214 mg/kg dry weight, respectively), were significantly lower. The integrated pollution index of six metals varied from 0.25 to 3.4 and from 2.5 to 8.4 in urban soils and dusts, respectively, with 61 % of urban soil samples being classified as moderately to highly polluted and all dust samples being classified as highly polluted. The statistical analysis results for the urban dust showed good agreement between principal component analysis and cluster analysis, but distinctly different elemental associations and clustering patterns were observed among heavy metals in the urban soils. The results of multivariate statistic analysis indicated that Cr and Ni concentrations were mainly of natural origin, while Cd, Cu, Pb, and Zn were derived from anthropogenic activities.  相似文献   

17.
Aerosol samples of PM10 and PM2.5 are collected in summertime at four monitoring sites in Guangzhou, China. The concentrations of organic and elemental carbons (OC/EC), inorganic ions, and elements in PM10 and PM2.5 are also quantified. Our study aims to: (1) characterize the particulate concentrations and associated chemical species in urban atmosphere (2) identify the potential sources and estimate their apportionment. The results show that average concentration of PM2.5 (97.54 μg m−3) in Guangzhou significantly exceeds the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg m−3. OC, EC, Sulfate, ammonium, K, V, Ni, Cu, Zn, Pb, As, Cd and Se are mainly in PM2.5 fraction of particles, while chloride, nitrate, Na, Mg, Al, Fe, Ca, Ti and Mn are mainly in PM2.5-10 fraction. The major components such as sulfate, OC and EC account for about 70–90% of the particulate mass. Enrichment factors (EF) for elements are calculated to indicate that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) are highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Ambient and source data are used in the multi-variable linearly regression analysis for source identification and apportionment, indicating that major sources and their apportionments of ambient particulate aerosols in Guangzhou are vehicle exhaust by 38.4% and coal combustion by 26.0%, respetively.  相似文献   

18.
This study was conducted to determine status of heavy metals in agricultural soils under different patterns of land use. A total of 38, 40 and 45 soil samples for bare vegetable field, greenhouse vegetable field, and grain crop field were respectively taken from surface layer (0–20 cm) from selected experimental areas away from suburbs of ten counties (or districts or cities) in four provinces or municipalities of Huabei plain in north China. Information of crop production history, including varieties, rotation systems and fertilizer use, at the corresponding sampling sites was surveyed. Soil total Cu, Zn, Cd, Pb, Cr, As and Hg were measured. The results showed that the contents of total Cu, Zn, Cd, Pb, Cr, As, and Hg in the soil samples, especially soil total Cu and Zn contents, were higher in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. Long-term use of excessive chemical fertilizers and organic manures in the bare vegetable field and the greenhouse vegetable field contributed to the accumulation of Cu, Zn, and other heavy metals in the soils. The contents of total Cu, Zn, and other heavy metals in soils increased with increasing vegetable production history of the research areas. In comparison with the grain crop field, the comprehensive pollution indices of the seven soil heavy metals and the single-factor pollution indices of soil Zn, Cu, Cd, Cr, and Hg based on the second criterion of Environmental Quality Standard for Soils were significantly higher in the bare vegetable field and the greenhouse vegetable field. Soils from the greenhouse vegetable field were slightly contaminated according to the comprehensive pollution index, and soils from the bare vegetable field and the grain crop field were at the warning heavy metal pollution level. The soils were contaminated with Cd according to the single-factor pollution index. The Cd pollution was relatively more serious in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. The soils selected with different land use patterns were not contaminated with Zn, Cu, Pb, Cr, As and Hg.  相似文献   

19.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

20.
该此研究分别于5月和8月在广州市主要的交通干道进行空气样品采集,并运用吹扫-捕集GC-MSD系统对其进行定性和定量分析。文章对样品中的四氯化碳、三氯乙烯和四氯乙烯等卤代烃化合物在街道微环境中的浓度水平;化合物含量的月、周末与非周末、上午与下午等的时间变化和新旧城区的空间分布特征进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号