首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkylphenols and alkylphenol ethoxylates (APE) are toxics classified as endocrine-disrupting compounds; they are used in detergents, paints, herbicides, pesticides, emulsifiers, wetting and dispersing agents, antistatic agents, demulsifiers, and solubilizers. Many studies have reported the occurrence of alkylphenols in different environmental matrices, though none of these studies have yet to establish a comprehensive overview of such compounds in the water cycle within an urban environment. This review summarizes APE concentrations for all environmental media throughout the water cycle, from the atmosphere to receiving waters. Once the occurrence of compounds has been assessed for each environmental compartment (urban wastewater, wastewater treatment plants [WWTP], atmosphere, and the natural environment), data are examined in order to understand the fate of APE in the environment and establish their geographical and historical trends. From this database, it is clear that the environment in Europe is much more contaminated by APE compared to North America and developing countries, although these APE levels have been decreasing in the last decade. APE concentrations in the WWTP effluent of developed countries have decreased by a factor of 100 over the past 30?years. This study is aimed at identifying both the correlations existing between environmental compartments and the processes that influence the fate and transport of these contaminants in the environment. In industrial countries, the concentrations observed in waterways now represent the background level of contamination, which provides evidence of a past diffuse pollution in these countries, whereas sediment analyses conducted in developing countries show an increase in APE content over the last several years. Finally, similar trends have been observed in samples drawn from Europe and North America.  相似文献   

2.
The partitioning of alkylphenols in the dissolved and particulate matter of influents, effluents, accumulation onto sludge and the impact of sewage treatment plant upon receiving waters was studied along the Ter River basin (Catalonia, NE Spain). A solid-phase extraction or pressurized liquid extraction followed by liquid chromatography-mass spectrometry was developed and permitted to determine target compounds with high efficiency in waters, particulate material and sludge. Nonylphenol mono- and diethoxylate, nonylphenol and octylphenol partitioned preferably upon particulate matter and sludge, whereas long chain NPE(3-15)O prevailed in the dissolved phase and was released by effluents. Within the treatment process, a net accumulation of alkylphenols in sludge was found, producing up to 148g/t/month. The removal efficiency of alkylphenols was of 37-90% and depended on the treatment. Assessment on the fate of these contaminants within STPs is discussed in terms of flow rates, biological oxygen demand and tons of sludge produced.  相似文献   

3.
Elevated concentrations of arsenic, nickel, and molybdenum in aquatic systems around northern Saskatchewan uranium mines are an environmental concern. Early life stage fathead minnows were used to assess toxicity from several aquatic systems near the Key Lake and Rabbit Lake uranium operations. Hatching success of fish embryos exposed to waters receiving contaminants associated with uranium ore milling was reduced by 32-61% relative to controls. Mortality differed in two lakes receiving mill effluents because of opposing factors influencing metal toxicity (i.e. low pH and high hardness). In one mill receiving water (Fox Lake), larval mortality was 0%, whereas mortality was 85% in water collected from a downstream location (Unknown Lake). Fish embryos exposed to open-pit dewatering effluent receiving waters, or water from a flooded open pit (i.e. pit waters), hatched 26-39% earlier than those exposed to reference or control water. The combination of low water hardness and elevated nickel concentrations in pit waters contributed to the early hatching. Egg hatchability and hatching time were more sensitive indicators of toxicity than 'standard' endpoints, like larval mortality and growth. Current regulatory emphasis on single contaminants and standard toxicological endpoints should be re-evaluated in light of the complex interaction among confounding variables such as pH, hardness. conductivity, and multi-metal mixtures.  相似文献   

4.
The biological availability of metals in municipal wastewater effluents is strongly influenced by the physical and chemical conditions of both the effluent and the receiving water. Aquatic organisms are exposed to both dissolved and particulate (food ingestion) forms of these metals. In the present study, the distribution of metals in specific tissues was used to distinguish between exposure routes (i.e. dissolved vs. particulate phase) and to examine metal bioavailability in mussels exposed to municipal effluents. Caged Elliptio complanata mussels were deployed at sites located between 1.5 km upstream and 12 km downstream of a major effluent outfall in the St. Lawrence River. Metals in surface water samples were fractionated by filtration techniques to determine their dissolved, truly-dissolved (<10 kDa), total-particulate and acid-reactive-particulate forms. At the end of the exposure period (90 days), pooled mussel soft tissues (digestive gland, gills, gonad, foot and mantle) were analyzed for several metals. The results showed that gills and digestive gland were generally the most important target tissues for metal bioaccumulation, while gill/digestive gland metal ratios suggest that both exposure routes should be considered for mussels exposed to municipal effluents. We also found that Ag and Cd in the dispersion plume nearest the outfall, in contrast to other metals such as Cu and Zn, are more closely associated with colloids and were generally less bioavailable than at the reference site in the St. Lawrence River.  相似文献   

5.
Degradation of polydimethylsiloxane fluids in the environment--a review   总被引:1,自引:0,他引:1  
Griessbach EF  Lehmann RG 《Chemosphere》1999,38(6):1461-1468
Due to their insolubility in water and high adsorption coefficient, liquid polydimethylsiloxanes (PDMS) discharged as effluent will adsorb to particulate matter and, therefore, will become a component of sewage sludge during waste water treatment. The subsequent environmental fate of PDMS will depend on the fate of the sludge. Due to increasing practices of soil amendment with sewage sludge the principal environmental compartment receiving PDMS fluids is the soil. Degradation of PDMS is a common process taking place in many different types of soils. It occurs through a unique combination of environmental degradation processes. Initial hydrolysis of PDMS is catalysed by clay minerals, the principal component of soil. The primary hydrolysis product, dimethylsilanediol (DMSD), is then either biodegraded, or evaporated into the atmosphere, where it is subsequently oxidised in the presence of sunlight. The end products in both cases are expected to be CO2, SiO2 and H2O.  相似文献   

6.
Many drugs such as beta-blockers have been shown to occur in aquatic environments. Even if adequate ecotoxicity data are not available, it is of primary importance to get informations about their fate in environmental waters, particularly about their photofate in sewage treatment plant effluents (STP). The main difficulties when studying pharmaceutical photochemical behaviour in environmental waters, are linked to the very low environmentally relevant concentrations (ng L(-1) to microg L(-1)) which can generate problems in terms of analytical sensitivity. Moreover, the complexity of environmental matrices can modify micropollutants degradation kinetics. The photodegradation of beta-blockers has been compared at two concentration levels (10 microg L(-1) and 10 mg L(-1)) and in two different matrices (pure water and STP effluent). It has been shown that the concentration does not influence beta-blockers degradation pathways, thus allowing the identification of degradation compounds using the 10 mg L(-1) solutions. Although environmental waters speed up the degradation process, the same photoproducts were appeared in both matrices. Using LC-MS/MS, hydroxyl radical additions have been identified as an important degradation pathway for especially pindolol, propranolol and timolol, leading to several positional isomers, corresponding to mono-, di- or tri-hydroxylations. Kinetics of appearance/disappearance of these photoproducts have been studied in STP effluents.  相似文献   

7.
Meta-analysis of environmental contamination by phthalates   总被引:1,自引:0,他引:1  
Phthalate acid esters (PAE), commonly named phthalates, are toxics classified as endocrine-disrupting compounds; they are primarily used as additives to improve the flexibility in polyvinyl chloride. Many studies have reported the occurrence of phthalates in different environmental matrices; however, none of these studies has yet established a complete overview for those compounds in the water cycle within an urban environment. This review summarizes PAE concentrations for all environmental media throughout the water cycle, from atmosphere to receiving waters. Once the occurrences of compounds have been evaluated for each environmental compartment (urban wastewater, wastewater treatment plants, atmosphere, and the natural environment), we reviewed data in order to identify the fate of PAE in the environment and establish whether geographical and historical trends exist. Indeed, geographical and historical trends appear between Europe and other countries such as USA/Canada and China, however they remain location dependent. This study aimed at identifying both the correlations existing between environmental compartments and the processes influencing the fate and transport of these contaminants into the environment. In Europe, the concentrations measured in waterways today represent the background level of contamination, which provides evidence of a past diffuse pollution. In contrast, an increasing trend has actually been observed for developing countries, especially for China.  相似文献   

8.
The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.  相似文献   

9.
A copper-cadmium-nickel-zinc mixture was assessed in seven different river waters to study metal toxicity to the ciliate protozoan Colpidium campylum, the interactions occurring between metals, and the influence of the receiving water on toxicity. In the range of concentrations tested, which are representative of electroplating industry wastes, the main part of the toxicity can be attributed to copper and to cadmium-copper synergy. A classification of waters, based on a principal component analysis (PCA), was used to examine the main parameters of the water, which can affect the toxicity of metal mixtures. It appears that the mineralization of the water, more than the total organic carbon (TOC), is an important parameter for the expression of toxicity. A strategy for the estimation of ecotoxicological hazard assessment, based on a simplified factorial experiment is proposed. It enables one to study, in a two-step bioassay, the toxicity of an effluent, the influence of river water on its toxicity, and the effects of contact time and dilution. By applying PCA to data from very different waters, it may be possible to estimate the ecotoxicological risk associated with the discharge of an effluent, on the basis of the chemistry of the receiving water.  相似文献   

10.
As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.  相似文献   

11.
The contribution of small watersheds to coastal pollution in Mediterranean areas is still poorly known, and presents great variations along an hydrological year. This work deals with the characterization and quantification of Al, Fe, Zn, Cu, Pb, Si, NO(3)(-) and organic carbon transported from the continent to the sea by a small coastal river in the French Mediterranean area. Transported species were characterized both during rainy and dry periods. During non-rainy periods (base-flow), waters showed a low content of contaminants, whereas during heavy rain events, following dry periods, some metals and organic carbon reached concentrations that could affect biological populations. These contaminants were mainly found in the particulate fraction, originating from the runoff of surface waters, which represents the main process of pollution in urban areas.  相似文献   

12.
Mihee Lim  Myoung-Jin Kim 《Chemosphere》2013,90(4):1526-1532
This study aims at evaluating the reuse feasibility of effluent produced by the soil washing of mine tailings with oxalic acid. Alkaline chemicals such as NaOH, Ca(OH)2, and Na2CO3 are used for the precipitation of arsenic and heavy metals in the effluent containing oxalic acid. All of the target contaminants are removed with very high efficiency (up to 100%) at high pH. The precipitation using NaOH at pH 9 is determined to be the most cost-effective method for the removal of arsenic as well as heavy metals in the effluent. The effluent decontaminated by NaOH is consecutively reused for the soil washing of raw mine tailings, resulting in considerable efficiency. Furthermore, even more arsenic and heavy metals are extracted from raw mine tailings by acidifying the decontaminated effluent under the alkaline condition, compared with direct reuse of the decontaminated effluent. Here, the oxalic acid, which is a weak complex-forming ligand as well as a weak acid, has noticeable effects on both soil washing and effluent treatment by precipitation. It extracts efficiently the contaminants from the mine tailings without adverse change of soil and also makes possible the precipitation of the contaminants in the effluent unlike strong chelating reagent. Reuse of the washing effluent containing oxalic acid would make the existing soil washing process more environment-friendly and cost-effective.  相似文献   

13.
The occurrence of antihistamines in sewage waters and in recipient rivers   总被引:2,自引:1,他引:1  
Background, aim and scope  Each year, large quantities of pharmaceuticals are consumed worldwide for the treatment and prevention of human and animal diseases. Although the drugs and the metabolites observed in the wastewaters and in the environment are present at concentrations several orders of magnitude lower than the concentrations required to exert their effects in humans or animals, their long-term impact on the environment is commonly not known. In this study, the occurrence of six antihistamines, which are used for the relief of allergic reactions such as hay fever, was determined in sewage treatment plants wastewaters and in recipient river waters. Materials and methods  The occurrence of the antihistamines cetirizine, acrivastine, fexofenadine, loratadine, desloratadine and ebastine in sewage treatment plants wastewaters and in recipient river waters was studied. The analytical procedure consisted of solid-phase extraction of the water samples followed by liquid chromatography separation and detection by a triple-quadrupole mass spectrometer in the multiple reaction mode. Results  Cetirizine, acrivastine and fexofenadine were detected in both influent and effluent wastewater samples at concentration levels ranging from about 80 to 220 ng/L, while loratadine, desloratadine and ebastine could not be detected in any samples. During sewage treatment, the concentration of the antihistamines dropped by an average of 16–36%. Furthermore, elevated concentrations of antihistamines were observed in samples collected during the season of most intensive plant pollen production, i.e. in May. In the river water samples, the relative pattern of occurrence of cetirizine, acrivastine and fexofenadine was similar to that in the wastewater samples; although the concentration of the compounds was substantially lower (4–11 ng/L). The highest concentrations of the studied drugs were observed near the discharging point of the sewage treatment plant. Discussion  The highest concentrations of antihistamines in STP wastewaters correlate with the outbreak of allergic reaction caused by high amounts of plant pollens in the air. The analysis results of the river water samples show that the antihistamines are carried far away from the effluent discharge points. They may account for a part of the mix of pharmaceuticals and of pharmaceutical metabolites that occur downstream of STPs. Conclusions  Antihistamines are poorly degraded/eliminated under the biological treatment processes applied in the wastewater treatment plants and, consequently, they are continuously being discharged along with other drugs to the aquatic environment. Recommendations and perspectives  As a huge quantity and variety of drugs and their metabolites are continuously discharged to rivers and the sea, the compounds should be considered as contaminants that may possess risks to the aquatic ecosystem. Further studies are urgently needed on the environmental fate of the antihistamines and other pharmaceuticals in the aquatic environment. These studies should be concerned with the stability of the compounds, their transformation reactions and the identity of the transformation products, the distribution of drugs and their uptake and effects in organisms. On the basis of these studies, the possible environmental hazards of pharmaceuticals may be assessed.  相似文献   

14.
Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L?1, respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.  相似文献   

15.

Purpose

The characteristics of organics in sulphite pulp mill effluent and in the receiving environment of effluent discharge were investigated to assess the basis for the persistence or attenuation of colour.

Methods

Characterization of organics was conducted through determination of SUVA, specific colour, and molecular weight distribution of organics using high performance size exclusion chromatography and by solid-state 13?C cross polarization (CP) NMR. The characteristics of organics from mill wastewater before and after secondary aerobic treatment, followed by lime treatment and from the receiving environment, an enclosed brackish lake were compared. Changes in the character of organics in lake water over a period of 14?years were studied in the context of changes in mill processing and climate impacts.

Results

High colour in mill effluent and in receiving waters correlated with high SUVA and specific colour levels, high molecular weight range and aromatic content. Conversely, lake waters with low colour had UV absorbing compounds of much lower molecular weight range and low relative abundance of aromatic compounds. Attenuation of colour and changes in the character of organics in the receiving environment coincided with increased concentrations of metal cations.

Conclusions

These increased concentrations appear to be due to the effects of climate change, lake management and their presence in mill effluent, with subsequent discharge to the lake. Attenuation of colour was found to be predominantly through removal of high molecular weight aromatic compounds where the removal processes could be through adsorption and co-precipitation with divalent metals, as well as through dilution processes.  相似文献   

16.
Fragrances are used in a wide array of everyday products and enter the aquatic environment via wastewater. While several musk compounds have been studied in detail, little is known about the occurrence and fate of other fragrances. We selected 16 fragrance compounds and scrutinized their presence in Bavarian sewage treatment plants (STP) influents and effluents and discussed their ecological risks for the receiving surface waters. Moreover, we followed their concentrations along the path in one STP by corresponding time-related water sampling and derived the respective elimination rates in the purification process. Six fragrance substances (OTNE, HHCB, lilial, acetyl cedrene, menthol, and, in some grab samples, also methyl-dihydrojasmonate) could be detected in the effluents of the investigated sewage treatment plants. The other fragrances under scrutiny were only found in the inflow and were eliminated in the purification process. Only OTNE and HHCB were found in the receiving surface waters of the STP in congruent concentrations, which exceeded the preliminary derived environmental thresholds by a factor of 1.15 and 1.12, respectively, indicating potential risks. OTNE was also detected in similar concentration ranges as HHCB in muscles and livers of fish from surface waters and from ponds that are supplied with purified wastewater. The findings show that some fragrance compounds undergo high elimination rates, whereas others—not only musks—are present in receiving surface water and biota and may present a risk to local aquatic biota. Hence, our results suggest that the fate and potential effects of fragrance compounds in the aquatic environment deserve more attention.  相似文献   

17.
The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.  相似文献   

18.
A simple partitioning scheme was used to assess the partitioning and behaviour of copper, cadmium, iron, lead and manganese within the surface waters and sediments of the River Yare, Norfolk, UK, following the discharge of final effluent to the water course from municipal sewage treatment works (STW). Sewage effluent discharges were shown to increase metal concentrations and complexation capacities in receiving waters, but the tidal nature of the river meant that surface water monitoring could not accurately pinpoint the contamination source or the main metal partitioning trends. Sediments formed a more stable base on which to perform contaminant studies: these revealed that metals discharged from the STW rapidly accumulated in bottom deposits in relative stable chemical forms.  相似文献   

19.
Five estrogenic hormones (unconjugated?+?conjugated fractions) and 10 beta blockers were analyzed in three wastewater treatment plant (WWTP) effluents and receiving river waters in the area of Lyon, France. In the different samples, only two estrogens were quantified: estrone and estriol. Some beta blockers, such as atenolol, acebutolol, and sotalol, were almost always quantified, but others, e.g., betaxolol, nadolol, and oxprenolol were rarely quantified. Concentrations measured in river waters were in the nanogram per liter range for estrogens and between 0.3 and 210 ng/L for beta blockers depending on the substance and the distance from the WWTP outfall. The impact of the WWTP on the receiving rivers was studied and showed a clear increase in concentrations near the WWTP outfall. For estrogens, the persistence in surface waters was not evaluated given the low concentrations levels (around 1 ng/L). For beta blockers, concentrations measured downstream of the WWTP outfall were up to 16 times higher than those measured upstream. Also, the persistence of metoprolol, nadolol, and propranolol was noted even 2 km downstream of the WWTP outfall. The comparison of beta blocker fingerprints in the samples collected in effluent and in the river also showed the impact of WWTP outfall on surface waters. Finally, a tentative environmental risk evaluation was performed on 15 sites by calculating the ratio of receiving water concentrations to predicted non-effect concentrations (PNEC). For estrogens, a total PNEC of 5 ng/L was considered and these substances were not linked to any potential environmental risk (only one site showed an environmental risk ratio above 1). Unfortunately, few PNECs are available and risk evaluation was only possible for 4 of the 10 beta blockers studied: acebutolol, atenolol, metoprolol, and propranolol. Only propranolol presented a ratio near or above 1, showing a possible environmental risk for 4 receiving waters out of 15.  相似文献   

20.
A variety of emerging chemicals of concern are released continuously to surface water through the municipal wastewater effluent discharges. The ability to rapidly determine bioaccumulation of these contaminants in exposed fish without sacrificing the animal (i.e. in vivo) would be of significant advantage to facilitate research, assessment and monitoring of their risk to the environment. In this study, an in vivo solid phase micro-extraction (SPME) approach was developed and applied to the measurement of a variety of emerging contaminants (carbamazepine, naproxen, diclofenac, gemfibrozil, bisphenol A, fluoxetine, ibuprofen and atrazine) in fish. Our results indicated in vivo SPME was a potential alternative extraction technique for quantitative determination of contaminants in lab exposures and as well after exposure to two municipal wastewater effluents (MWWE), with a major advantage over conventional techniques due to its ability to non-lethally sample tissues of living organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号