首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avila RM  Kautsky U  Ekström PA 《Ambio》2006,35(8):513-523
To evaluate the radiological impact of potential releases to the biosphere from a geological repository for spent nuclear fuel, it is necessary to assess the long-term dynamics of the distribution of radionuclides in the environment. In this paper, we propose an approach for making prognoses of the distribution and fluxes of radionuclides released from the geosphere, in discharges of contaminated groundwater, to an evolving landscape. The biosphere changes during the temperate part (spanning approximately 20,000 years) of an interglacial period are handled by building biosphere models for the projected succession of situations. Radionuclide transport in the landscape is modeled dynamically with a series of interconnected radioecological models of those ecosystem types (sea, lake, running water, mire, agricultural land and forest) that occur at present, and are projected to occur in the future, in a candidate area for a geological repository in Sweden. The transformation between ecosystems is modeled as discrete events occurring every thousand years by substituting one model by another. Examples of predictions of the radionuclide distribution in the landscape are presented for several scenarios with discharge locations varying in time and space. The article also outlines an approach for estimating the exposure of man resulting from all possible reasonable uses of a potentially contaminated landscape, which was used for derivation of Landscape Dose Factors.  相似文献   

2.
The US Department of Energy (DOE), with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, NM. Performance assessment (PA) analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. For long-term brine releases, migration pathways through the permeable layers of rock above the Salado formation are important. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been carried out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft (AIS)). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22Na. Elution experiments carried out over periods of a few days with tracers 232U and 239Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241Pu and 241Am were attempted but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241Pu and 241Am after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the 241Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the 241Pu was dispersed with a very high apparent retardation value. The 241Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.  相似文献   

3.
GOAL, SCOPE AND BACKGROUND: This paper uses two case studies of U.S. Department of Energy nuclear weapons complex installations to illustrate the integration of expedited site characterization (ESC) and multimedia modeling in the remedial action decision making process. CONCEPTUAL SITE MODELS, MULTIMEDIA MODELS, AND EXPEDITED SITE CHARACTERIZATION: Conceptual site models outline assumptions about contaminates and the spatial/temporal distribution of potential receptors. Multimedia models simulate contaminant transport and fate through multiple environmental media, estimate potential human exposure via specific exposure pathways, and estimate the risk of cancer and non-cancer health outcomes. ESC relies on using monitoring data to quantify the key components of an initial conceptual site model that is modified iteratively using the multimedia model. CASE STUDIES: Two case studies are presented that used the ESC approach: Los Alamos National Laboratory (LANL) and Pantex. LANL released radionuclides, metals, and organic compounds, into canyons surrounding the facility. The Pantex Plant has past waste management operations which included burning chemical wastes in unlined pits, burying wastes in unlined landfills, and discharging plant wastewaters into on-site surface waters. CONCLUSIONS: The case studies indicate that using multimedia models with the ESC approach can inform assessors about what, where, and how much site characterization data needs to be collected to reduce the uncertainty associated with risk assessment. Lowering the degree of uncertainty reduces the time and cost associated with assessing potential risk and increases the confidence that decision makers have in the assessments performed.  相似文献   

4.
Perfluorooctane sulfonate (PFOS) and PFOS-related substances have been listed as persistent organic pollutants in the Stockholm Convention. From August 2012, Parties to the Convention needed to address the use, storage, and disposal of PFOS—including production sites and sites where PFOS wastes have been deposited—in their national implementation plans. The paper describes the pollution in Minnesota (USA) caused by the 3M Company at one of the largest per/polyfluorinated chemical (PFC) production facilities. From early 1950s until the end of 2002, when 3M terminated PFOS and perfluorooctanoic acid (PFOA) production, PFOS, PFOA, and other PFC production wastes were disposed around the plant and in local disposal sites. Discharges from the site and releases from deposits caused widespread contamination of ground and surface waters including local drinking water wells. Fish in the river downstream were contaminated with PFOS to levels that led to fish consumption advisories. Human exposures resulted from ingesting contaminated drinking water, requiring installation of water treatment facilities and alternate water supplies. The critical evaluation of the assessments done revealed a range of gaps in particular of human exposure where relevant exposure pathways including the entire exposure via food have not been taken into consideration. Currently, the exposure assessment of vulnerable groups such as children or Hmong minorities is inadequate and needs to be improved/validated by epidemiological studies. The assessment methodology described for this site may serve—with highlighted improvements—as a model for assessment of other PFOS/PFC production sites in the Stockholm Convention implementation.  相似文献   

5.
ABSTRACT

Owners of hazardous waste treatment, storage, and disposal facilities, and certain major air pollution sources, must conduct several separate ambient air dispersion modeling analyses before beginning construction of new facilities or modifying existing facilities. These analyses are critical components of the environmental permitting and facility certification processes and must be completed to the satisfaction of federal, state, and local regulatory authorities.

The U.S. Army has conducted air dispersion modeling for its proposed chemical agent disposal facilities to fulfill the following environmental regulatory and risk management requirements: (1) Resource Conservation and Recovery Act human health and ecological risk assessment analysis for the hazardous waste treatment and storage permit applications, (2) Quantitative Risk Assessment to support the site-specific risk management programs, and (3) Prevention of Significant Deterioration ambient air impact analysis for the air permit applications. The purpose of these air dispersion modeling studies is to show that the potential impacts on human health and the environment, due to operation of the chemical agent disposal facilities, are acceptable. This paper describes and compares the types of air dispersion models, modeling input data requirements, modeling algorithms, and approaches used to satisfy the three environmental regulatory and risk management requirements listed above. Although this paper discusses only one industry (i.e., chemical demilitarization), the information it contains could help those in other industries who need to communicate to the public the purpose and objectives of each modeling analysis. It may also be useful in integrating the results of each analysis into an overarching summary of compliance and potential risks.  相似文献   

6.
Assessments of radiological impacts on humans and other biota from potential releases to the biosphere from a deep geologic repository for spent nuclear fuel are associated with several challenges. Releases, if any, will likely occur in a far future and to an environment that will have experienced substantial transformations. Such releases would occur over very long periods during which environmental conditions will vary continuously due to climate change and ecosystem succession. Assessments of radiological impacts must therefore be based on simulations using models that can describe the transport and accumulation of radionuclides for a large variety of environmental conditions. In this paper we describe such a model and show examples of its application in a safety assessment, taking into account results from sensitivity and uncertainty analyses of the model predictions.  相似文献   

7.
Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases.  相似文献   

8.
In safety assessments of underground radioactive waste repositories, understanding radionuclide fate in ecosystems is necessary to determine the impacts of potential releases. Here, the reliability of two mechanistic models (the compartmental K-model and the 3D dynamic D-model) in describing the fate of radionuclides released into a Baltic Sea bay is tested. Both are based on ecosystem models that simulate the cycling of organic matter (carbon). Radionuclide transfer is linked to adsorption and flows of carbon in food chains. Accumulation of Th-230, Cs-135, and Ni-59 in biological compartments was comparable between the models and site measurements despite differences in temporal resolution, biological state variables, and partition coefficients. Both models provided confidence limits for their modeled concentration ratios, an improvement over models that only estimate means. The D-model enables estimates at high spatio-temporal resolution. The K-model, being coarser but faster, allows estimates centuries ahead. Future developments could integrate the two models to take advantage of their respective strengths.  相似文献   

9.
In long-term safety assessment models for radioactive waste disposal, uptake of radionuclides by plants is an important process with possible adverse effects in ecosystems. Cobalt-60, 59,63Ni, 93Mo, and 210Pb are examples of long-living radionuclides present in nuclear waste. The soil-to-plant transfer of stable cobalt, nickel, molybdenum and lead and their distribution across plant parts were investigated in blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies) at two boreal forest sites in Eastern Finland. The concentrations of all of the studied elements were higher in roots than in above-ground plant parts showing that different concentration ratios (CR values) are needed for modelling the transfer to roots and stems/leaves. Some significant differences in CR values were found in comparisons of different plant species and of the same species grown at different sites. However, large within-species variation suggests that it is not justified to use different CR values for modelling soil-to-plant transfer of these elements in the different boreal forest plant species.  相似文献   

10.
Air pollution in England and Wales is reviewed to identify priorities for management and research. The main human drivers of emissions are the production and consumption of energy and materials, disposal of waste, transport and land use. Pollutants are assigned to seven types: (i) nuisance (e.g. odour, noise), (ii) toxic, (iii) acidifying/eutrophying, (iv) photochemical oxidant precursors, (v) radionuclides, (vi) stratospheric ozone depleting substances and (vii) greenhouse gases. Dominant trends in activity and emissions are highlighted. New technologies and fuels are partially decoupling emissions from activity in power generation, industry and transport, but the gains are being offset by growth in demand and output in all major sectors. The evidence for impacts on human health, the atmosphere and other environmental systems is discussed. Priorities for management are climate change, ground-level ozone, acidification and eutrophication by nitrogen, urban air quality and nuisance pollution. Management responses require greater foresight, technological improvements and new instruments to control polluting activities. More scientific information is needed on the impacts on human health, quality of life and ecosystems, and on the links between different types of pollution. The policy challenges include generating energy sustainably, reducing transport impacts, devising effective economic instruments, improving societal awareness and contributing to cleaner global development.  相似文献   

11.
Hydrated bentonite is a very plastic material and it is expected to enter in the rock microfractures at the granite/bentonite boundary of a deep geological high-level waste repository. This process is enhanced by the high swelling pressure of the clay. Since bentonite has a very good sorption capability for many radionuclides, the displacement of the clay might lead to a "clay-mediated" contaminant transport into the rock. The aim of this work is to study the contaminant transport into granite microfractures using nuclear ion beam techniques, and to determine to what extent the clay can favour it. To do so, bentonite previously doped with uranium, cesium and europium was put in contact with the surface of granite sheets. Granite sheets contacted with non-doped bentonite and with radionuclide solutions were also prepared as references. This allowed analysing the differences in the diffusion behaviour of the three systems: clay, radionuclides and clay plus radionuclides. A combination of Rutherford backscattering spectrometry (RBS) and other nuclear ion-beam techniques such as particle-induced X-ray emission (PIXE) and microPIXE was used to study the depth and lateral distribution of clay and contaminants inside granite. It was also tried to evaluate not only the diffusion depth and diffusion coefficients but also the different areas of the granite where the diffusants have a preferential access.  相似文献   

12.
Electrokinetic remediation of concrete: effect of chelating agents   总被引:1,自引:0,他引:1  
Contamination of concrete at various nuclear power plants and spent nuclear fuel reprocessing facilities by radionuclides represents a significant problem for the world's nuclear power industries and nuclear waste management. The present publication summarizes the most recently published data on Electrokinetic Remediation (EK) of various concrete installations and advantageous effects of the combination of EK with different chelating agents. The specific aspects of decontamination of concrete and mortar surfaces are analyzed, such as: (a) effect of chelating agents (EDTA, citric acid), (b) effect of the zeta-potential (zeta) of concrete surface, (c) effects of sorption and complex formation equilibrium, and (d) specific advantages and problems of the electrokinetic decontamination process. The results of laboratory and in situ tests of chelating agent assisted EK removal of radionuclides are reported. It is demonstrated that the correct combination of EK with specific chelating agents can be effectively employed for decontamination of concrete surfaces.  相似文献   

13.
Systematic management for industrial waste in Japan has been carried out based on the Waste Disposal and Public Cleansing Law which was enacted in 1970. The law and its ordinances designate 19 kinds of waste materials discharged from business activities as industrial waste and prescribe the generator's responsibility, requirements for treatment contractors, standards for consignment, specific personnel, etc. from the view of proper management. And they also, prescribe disposal standards, structure, and maintenance standards for treatment facilities, including final disposal sites, from the view of proper treatment and disposal. The Standard for Verification provides criteria to categorize as hazardous or nonhazardous industrial waste which is subjected to treatment and disposal in conformity with each standard. The fundamental policies to cope with industrial waste focus on reduction of generation, promotion of recycling, establishment of a comprehensive information management system and participation of the public which can contribute well to prevent environmental pollution caused by inappropriate management of industrial waste.  相似文献   

14.
Although it occurred nearly 50 years ago, the nuclear reactor fire of October 1957 at Windscale Works, Sellafield, England, continues to attract interest. Several attempts have been made to quantify the releases of radionuclides and their radiological consequences, but additional information and a re-analysis of meteorological data encourage a further examination of emissions. The limited instrumentation of the reactor provided little relevant information and, as in previous estimates, the discharges are deduced from environmental evidence, but here the recent meteorological analysis is used. The interpretation of the meteorological and environmental evidence requires both timing and quantity of the emitted radionuclides to be considered together.Significant fission product emission continued from about 15:00 or 16:00 on 10 October 1957 until noon the following day. There were two main peaks in discharge rate, during the evening and early hours and from roughly 06:00 until 10:30, and the amounts emitted during each of these periods were probably comparable.Iodine-131 (131I), caesium-137 (137Cs) and polonium-210 (210Po) activities dominated the radioactive emissions and there is sufficient environmental evidence for releases of these radionuclides to be estimated within a factor of about two. (Some additional 131I may have escaped in a chemical form that was not included in the estimate, but it appears likely that the fraction was small.) There is evidence that the plume extended further east than accepted in previous assessments and the estimates of quantities emitted have been increased to allow for this. For other radionuclides the environmental measurements were fewer and the uncertainties are greater.  相似文献   

15.
ABSTRACT

This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deac-tivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution emissions. Hospitals in Idaho, however, were still operating incinerators in the absence of state regulations specific to these types of facilities.  相似文献   

16.
The natural system is expected to contribute to isolation at the proposed high-level nuclear waste (HLW) geologic repository at Yucca Mountain, NV (YM). In developing performance assessment (PA) computer models to simulate long-term behavior at YM, colloidal transport of radionuclides has been proposed as a critical factor because of the possible reduced interaction with the geologic media. Site-specific information on the chemistry and natural colloid concentration of saturated zone groundwaters in the vicinity of YM is combined with a surface complexation sorption model to evaluate the impact of natural colloids on calculated retardation factors (RF) for several radioelements of concern in PA. Inclusion of colloids into the conceptual model can reduce the calculated effective retardation significantly. Strongly sorbed radionuclides such as americium and thorium are most affected by pseudocolloid formation and transport, with a potential reduction in RF of several orders of magnitude. Radioelements that are less strongly sorbed under YM conditions, such as uranium and neptunium, are not affected significantly by colloid transport, and transport of plutonium in the valence state is only moderately enhanced. Model results showed no increase in the peak mean annual total effective dose equivalent (TEDE) within a compliance period of 10,000 years, although this is strongly dependent on container life in the base case scenario. At longer times, simulated container failures increase and the TEDE from the colloidal models increased by a factor of 60 from the base case. By using mechanistic models and sensitivity analyses to determine what parameters and transport processes affect the TEDE, colloidal transport in future versions of the TPA code can be represented more accurately.  相似文献   

17.
Hazardous wastes in the environment represent one of our most serious problems. Ever increasing quantities of toxic wastes have contaminated our land, air, and water. Lack of adequate hazardous waste disposal facilities is a critical problem. Landfilling toxic wastes is no longer considered safe. The tragedy of the Love Canal has demonstrated the need for proper hazardous waste disposal facilities. The best organic chemical waste disposal method is process incineration. Cement kilns have been used for burning toxic chemical industrial wastes in Canada, Michigan, New York, Sweden, etc. Existing cement kilns, when properly operated, can destroy most organic chemical wastes. Even the most complex chlorinated hydrocarbons, including PCB can be completely destroyed during normal cement kiln operations, with minimal emissions to the environment. Burning toxic chemical wastes in cement kilns, and other mineral industries, is mutually beneficial to both industry, who generates such wastes, and to society and government, who want to dispose properly of such wastes in a safe, environmentally acceptable manner. The added benefit of energy conservation is important, since large quantities of valuable fuel can be saved in the manufacture of cement when such techniques are employed.  相似文献   

18.
Wijnbladh E  Jönsson BF  Kumblad L 《Ambio》2006,35(8):484-495
Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.  相似文献   

19.
Widespread pollution prevention will turn on creative use of incentives, since prevention means decentralized changes in raw materials, products, production processes and disposal practices—in short, new ways of doing business—that are difficult to achieve through information transfer or regulatory mandates alone. But past experience with incentives and the context in which these approaches are used will shape both regulators’ attitudes and industry willingness to respond. Thus the choice of incentive mechanism (s) may well determine the extent to which “prevention” is implemented—as well as the extent to which implementation yields environmentally-sound rather than perverse results. Approaches now being debated could produce such perverse effects by treating recyclables as pollution and assuming all reductions towards zero are equally desirable, regardless of net risks reduced or costs incurred by waste generators. Another alternative— tradeable permits progressively reducing the amount of waste received by disposal facilities—could help agencies think through such consequences, force needed decisions on how much “prevention” of which “pollution” is appropriate, and encourage investment to reduce commercial as well as municipal waste. This alternative implies that the criteria for “appropriate prevention” are reduction in waste needing disposal and in overall environmental impact; that recycling should be equated with source reduction in waste management hierarchies, not placed on a lower rung; and that Air Toxics provisions of the pending Clean Air Act may require some adjustments if prevention is not to be aborted by the threat that voluntary reduction steps will become national requirements, for existing sources as well as new ones.  相似文献   

20.
The present Spanish concept of a deep geological high level waste repository includes an engineered clay barrier around the canister. The clay presents a very high sorption capability for radionuclides and a very small hydraulic conductivity, so that the migration process of solutes is limited by sorption and diffusion processes. Therefore, diffusion and distribution coefficients in compacted bentonite (i.e. in "realistic" liquid to solid ratio conditions) are the main parameters that have to be obtained in order to characterise solute transport that could be produced after the canister breakdown. Through-Diffusion (TD) and In-Diffusion (ID) experiments with HTO, Sr, Cs and Se were carried out using compacted FEBEX bentonite, which is the reference material for the Spanish concept of radioactive waste disposal. Experiments were interpreted by means of available analytical solutions that allow the estimation of diffusion coefficients and, in some cases, distribution coefficients. Analytical solutions are simple to use, but rely on hypotheses that do not hold in all the experiments. These experiments were interpreted also using an automatic parameter estimation code that overcomes the limitations of analytical solutions. Numerical interpretation allows the simultaneous estimation of porosity, diffusion and distribution coefficients, accounts for the role of porous sinters and time-varying boundary concentrations, and can use different types of raw concentration data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号