首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An incubation experiment was performed to study the effect of sewage sludge on microbial respiration and nutrient mineralization in a sandy soil as an indication of its effects on soil biological properties and nutrient transformation. Sewage sludge was amended with a sandy soil at 0, 25, 50, 150 and 350 g kg−1 fresh weight. An increase in the sludge amendment rate caused an increase in both pH and electrical conductivity (EC). However, pH decreased while EC increased and then decreased along the incubation time. Nevertheless salinity and heavy metal contents of the soil sludge mixture were all within the safety guidelines. Soluble NH4+, NO32− and PO32− increased after amending the soil with sewage sludge, but increasing the application rate to 350 g kg−1 of sludge decreased the N and P mineralization efficiency and created an adverse effect on nitrification. The daily CO2 evolution pattern was the same in all treatments that CO2 evolution increased initially and then decreased till the end of the incubation period. All the treatments had peak CO2 evolution at day 7, except for the soil amended with 350 g kg−1 of sludge which had peak CO2 evolution at day 2. Similarly, the percentage of C-mineralization decreased with an increase in sludge amendment rate. The present experiment indicated that an application rate of 50–150 g kg−1 sludge for sandy soil would have the optimal beneficial effect on the soil in terms of microbial activity and nutrient transformation.  相似文献   

3.
The transformation of inorganic iodine (I and IO3) incubated in soils with varying amounts of organic matter (Andosols from the surface layer of an upland field and forest, as well as Acrisols from surface and subsurface layers of an upland field) was investigated by using the iodine K-edge X-ray absorption near-edge structure (XANES). After 60 d of reaction, both I and IO3 were transformed into organoiodine in surface soils containing sufficient amounts of organic matter, whereas IO3 remained unchanged in the subsurface soil of Acrisols with low organic matter contents. Transformation of IO3 into organoiodine was not retarded when the microbial activity in soil was reduced by γ-ray irradiation, suggesting that microbial activity was not essential for the transformation of inorganic iodine into organoiodine. Soil organic matter has the ability to transform inorganic iodine into organoiodine.  相似文献   

4.
Determined the contribution of root derived CO2 efflux to total CO2 efflux (including root and non-root derived CO2 efflux) is import to grope the mechanism of CO2 efflux, however, becaused of ‘rhizoshere priming effect’ (RPE), it is difficult to achieve in practice. In this study, we attempted to estimate the RPE via comparing basal soil respiration (Rb) achieved by two different methods namely, y-intercept regression and direct bare plot approach in an arid cotton field, central Asia. On the basis of the y-intercept of linear regressions between below-ground respiration (BGR) and root biomass, Rb was indirectly calculated. Comparing with the first approach, the second approach involved direct measurements of soil respiration from bare plots. Rb estimated by y-intercept method contained the component of RPE whereas direct bare plot did not. We found that RPE showed a phenological trend with highest value in flowering stage at 0.145 g CO2 m–2 h–1 and lowest at budding stage (0.007 g CO2 m–2 s–1), even after the data had been corrected for the influence of soil temperature. We concluded that RPE needed to be considered when Rb was estimated by y-intercept approach.  相似文献   

5.
A comparative assessment of the biological properties of chernozem soils in agro- and biogeocenoses has been made by determining the rates of basal and substrate-induced soil respiration and using these data to calculate ecophysiological indices characterizing the potential and stability of soil microbial biomass. The results show that the rate of CO2 emission and the contents of microbial biomass carbon in agriculturally exploited chernozem soils have decreased by factors of 3 and 2.6, respectively. The values of microbial metabolic quotients are indicative of medium-to-strong disturbance to the stability of microbial communities in chernozem soils of agrocenoses.  相似文献   

6.
Samples of precipitation events (snow and rain) in Dalian, a typical coastal town in China, were analyzed for perfluorosulfonates (PFSAs) and perfluorocarboxylates (PFCAs) to investigate atmospheric contamination by these compounds. In the snow event on December 16, 2006, samples were collected from 21 different sites and in another 6 precipitation events, samples were collected from a single location. Four PFSAs (C4, C6, C8, C10) and seven PFCAs (C6–12) were analyzed. Among the homologues, perfluorooctane sulfonate (PFOS) concentrations were the highest with a geometric mean (GM) of 145 ng/L (n = 21) during the snow event on December 16, 2006, followed by perfluorooctanoate (PFOA) with a GM of 24.7 ng/L (n = 21). Concentrations of perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS) and perfluoroheptanoate (PFHpA) were more than two orders of magnitude lower than that of PFOS. Other PFSAs and PFCAs were found to be below the limit of detection in all the samples. In other 6 precipitation events, PFSAs and PFCAs were detected approximately in the same order of magnitude in both snow and rain. The results indicate that wet deposition may be a potential transport mechanism of perfluorinated chemicals in the environment.  相似文献   

7.
Young (1 month old) and mature (2 years old) constructozems (artificial soils) were supplemented with individual heavy metal salts or diesel fuel at different concentrations. The polluted and control constructozem variants were incubated and sampled at different time points to determine microbial biomass carbon (Cmic) and microbial respiration (MR). These parameters were found to be almost twice higher in the young than in the mature constructozem, with all pollutants causing an increase in Cmic, MR, and MR/Cmic = qCO2 values. The pollutant type had an effect on MR and qCO2 variances, and the time of exposure, on Cmic. The qCO2 value showed a strong positive correlation with pollutant concentrations, allowing this parameter to be regarded as a suitable indicator of urban environmental pollution.  相似文献   

8.
Empirical data on the 137Cs activity concentration in meat of roe deer (Capreolus capreolus) roaming in 3 spruce forest areas and one peat bog area are presented and compared. They cover time series of nearly 20 years after a spike contamination in 1986 originating from Chernobyl. A model is presented which considers three soil compartments to describe the change of the availability of 137Cs with time.  相似文献   

9.
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (CDGT) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO22+, uranyl carbonate complexes and UO2PO4. The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.  相似文献   

10.
Heterogeneity of precipitation could influence various physiological and ecological processes of plants. We present a comparative study on the ecophysiological responses of two congenerous species, Mosla chinensis (an endemic species) and M. scabra (a weedy species), to four soil water content (20%, 40%, 60% and 90% of water holding capacity (WHC), referred to as W20, W40, W60 and W90, respectively) to understand their ecophysiological responses and ecological differentiation. Results showed that both species grew well from W40 to W90, as they showed higher photosynthetic rate and biomass and bigger plants under these soil water content. However, biomass, chlorophyll a to b ratio (Chl a/b) and root to shoot ratio (R/S) of M. scabra but not M. chinensis were significantly reduced under W20, indicating M. chinensis showed stronger capacity of sun-acclimation under severe drought than M. scabra. M. chinensis showed priority in adapting severe drought in comparison with M. scabra. We hypothesize that the different adaptive abilities to soil water content are partly responsible for their ecological differentiation observed in the field and may affect their fate in their native habitat.  相似文献   

11.
Species distribution is often closely associated with soil nutrients in terrestrial ecosystem. In contrast to most manipulated N (nitrogen) experimental studies, there are few observation experiments examining the distribution of species or functional groups along a natural soil N gradient. Alpine meadows with higher soil spatial heterogeneity at fine scale, which have a large gradient in soil N gradient, provides an ideal system to examine the distribution of species or functional groups. Here we used redundancy analysis (RDA) to examine the relationships between soil and plant properties in northeast of Qinghai-Tibet Plateau over two years. The results showed the relative biomass of forbs increased, while those of legumes and grasses decreased with the soil N availability. This suggests that legumes and grasses had stronger tolerance to infertile soils than forbs, which may due to the N2-fixed for legumes and high nutrient use efficiency for grasses. Furthermore, the positive significant relationships between the percentage of legumes biomass and N: P (phosphorus) ratio were found in the whole community and non-legumes, confirming the presence of legumes improved the vegetation N status even for non-legumes.  相似文献   

12.
Total soil available nitrogen concentrations (NO–3 + NH 4 + ) were determined underneath plants of the more-competitive Poa ligularis, mid-competitive Nassella tenuis and the less-competitive Amelichloa ambigua exposed to various combinations of controlled burning and defoliation treatments. Defoliations were at the vegetative (V), internode elongation (E) or both developmental morphology stages (V + E) during two years after burning in northeastern Patagonia, Argentina. Hypotheses were that (1) concentrations of total soil available nitrogen after burning are greater underneath burned than unburned plants. With time, these differences, however, will gradually disappear; (2) greater total soil available nitrogen concentrations are underneath plants of the more- than less-competitive perennial grasses; and (3) total soil available nitrogen is similar or lower underneath plants defoliated at the various developmental morphology stages in all three study species than on untreated controls at the end of the study. Concentration of total soil available nitrogen increased 35% (p < 0.05) on average after the first six months from burning in comparison to control plants. However, these differences disappeared (p > 0.05) towards the end of the first study year. Total soil available nitrogen concentrations were at least 10% lower underneath the less competitive N. tenuis and A. ambigua than the more competitive P. ligularis on average for all treatments, although differences were not significant (p > 0.05) most of the times. Defoliation had practically no effect on the concentration of total soil available nitrogen. Rather than any treatment effect, total soil nitrogen concentrations were determined by their temporal dynamics in the control and after the experimental fire treatments.  相似文献   

13.
This study was conducted to identify the principle selenate carrier phases for two selected soils, by comparing their reactivity with selenate to that of pure phases of the solids. Silica, calcium carbonate, aluminium hydroxide, goethite, bentonite and humic acid were selected as the main soil carrier phases. Comparisons were made first on the parameter values obtained with the best fit of a kinetic sorption model which can discriminate instantaneous sorption from kinetically limited sorption. Then comparisons were made of the ability for each solid to stabilise selenate by measuring the ratio of the partition coefficient for sorption (Kdsorption) over that of the desorption (Kddesorption). Kinetics and stabilisation were used to help elucidate the nature of interactions with the test solid phases for a large range of selenate concentrations. The experiments were conducted over 165 h in batch reactors, the solid being isolated from the solution by dialysis tubing, at two pH (5.4 and 8) and three selenate concentrations (1 × 10−3, 1 × 10−6 and 1 × 10−8 mol L−1). The results obtained showed that only aluminium hydroxide can sorb selenate throughout the studied pH range (pH 5.4 to 8.0). The sorption capacity on this mineral was high (Kdsorption > 100 to 1 × 104 L kg−1) and the selenate was mainly stabilized by the formation of inner sphere complexes. The sorption on goethite occurred at pH 5.4 (Kdsorption 52 L kg−1), mainly as outer sphere complexes, and was null at pH 8. On silica, a weak sorption was observed only at pH 5.4 and at 165 h (Kdsorption 4 L kg−1). On bentonite, calcium carbonate and humic acid no significant sorption was observed. Concerning the two soils studied, different behaviours were observed for selenate. For soil Ro (pH 5.4), Kdsorption was low (8 L kg−1) compared to soil Bu (pH 8) (70 L kg−1). The sorption behaviour of selenate on soil Ro was mainly due to outer sphere complexes, as for goethite, whereas for soil Bu the sorption was mainly attributed to inner sphere complexes followed by reduction mechanisms, probably initiated by microorganisms, in which no steady state was reached at the end of the 165 h experiments. The sorption of selenate decreased when concentrations reached 1 × 10−3 mol L−1, due to solid saturation, except for aluminium hydroxide. Reduction of selenate seemed also to occur on goethite and soil Ro, for the same concentration, but without preventing a decrease in sorption. Thus, this work shows that the comparison of selenate behaviour between soil and pure phases helps to elucidate the main carrier phases and sorption mechanisms in soil.  相似文献   

14.
The dynamics of Cs and Sr sorption by soils, especially in the subtropics and tropics, as influenced by soil components are not fully understood. The rates and capacities of Cs and Sr sorption by selected subtropical and tropical soils in Taiwan were investigated to facilitate our understanding of the transformation and dynamics of Cs and Sr in soils developed under highly weathering intensity. The Langmuir isotherms and kinetic rates of Cs and Sr sorption on the Ap1 and Bt1 horizons of the Long-Tan (Lt) and the A and Bt1 horizons of the Kuan-Shan (Kt), Mao-Lin (Tml) and Chi-Lo (Cl) soils were selected for this study. Air-dried soil (<2 mm) samples were reacted with of 7.5 × 10−5 to 1.88 × 10−3 M of CsCl (pH 4.0) or 1.14 × 10−4 to 2.85 × 10−3 M of SrCl2 (pH 4.0) solutions at 25 °C. The sorption maximum capacity (qm) of Cs by the Ap1 and Bt1 horizons of the Lt soil (62.24 and 70.70 mmol Cs kg−1 soil) were significantly (p < 0.05) higher than those by the A and Bt1 horizons of the Kt and Cl soils (26.46 and 27.49 mmol Cs kg−1 soil in Kt soil and 34.83 and 29.96 mmol Cs kg−1 soil in Cl soil, respectively), however, the sorption maximum capacity values of the Lt and Tml soils did not show significant differences. The amounts of pyrophosphate extractable Fe (Fep) were correlated significantly with the Cs and Sr sorption capacities (for Cs sorption, r2 = 0.97, p < 1.0 × 10−4; for Sr sorption, r2 = 0.82, p < 2.0 × 10−3). The partition coefficient of radiocesium sorbed on soil showed the following order: Cl soil ? Kt soil > Tml soil > Lt soil. It was due to clay minerals. The second-order kinetic model was applied to the Cs and Sr sorption data. The rate constant of Cs or Sr sorption on the four soils was substantiality increased with increasing temperature. This is attributable to the availability of more energy for bond breaking and bond formation brought about by the higher temperatures. The rate constant of Cs sorption at 308 K was 1.39-2.09 times higher than that at 278 K in the four soils. The activation energy of Cs and Sr sorbed by the four soils ranged from 7.2 to 16.7 kJ mol−1 and from 15.2 to 22.4 kJ mol−1, respectively. Therefore, the limiting step of the Cs+ or Sr2+ sorption on the soils was diffusion-controlled processes. The reactive components, which are significantly correlated with the Langmuir sorption maxima of Cs and Sr by these soils, substantially influenced their kinetic rates of Cs and Sr sorption. The data indicate that among components of the subtropical and tropical soils studied, short-range ordered sesquioxides especially Al- and Fe-oxides complexed with organics play important roles in influencing their capacity and dynamics of Cs and Sr sorption.  相似文献   

15.
Fruiting bodies of fungi belonging to more than 70 species were collected within a few thousand square meter area of one forest during 2006 and 2007. The soil profile was collected to check the cumulative deposition of 137Cs, which was relatively high, equal to 64 ± 2 kBq/m2 (calculated for October 2006). The majority of this activity was in the first 6 cm. Fruitbodies were analyzed for radiocesium and 40K by means of gamma-spectrometry. The highest 137Cs activity was 54.1 ± 0.7 kBq/kg (dry weight) for a sample of Lactarius helvus collected in 2006. The results for 2006 were higher than those for 2007. In a few cases the traces of short-lived (T1/2 = 2.06 a) 134Cs were still found in samples. The importance of mycorrhizal fungi for radiocesium accumulation is confirmed. The differences in activity among the species are discussed in relation to observations and predictions from previous studies, where the change in relative accumulation between fruiting bodies of different species was at least partially explained by the differences in the depth of the mycelium localization in a litter/soil system. It is concluded that in some cases, such as Boletus edulis and Xerocomus badius, this prediction is fulfilled and therefore this explanation confirmed.  相似文献   

16.
A study was conducted to see the effect of arsenic contamination on soil quality indicators, viz., microbial biomass, soil respiration, fluorescein diacetate and dehydrogenase (DHG) activity in arsenic contaminated soils of West Bengal. All the parameters were significantly and negatively correlated with all the form of arsenic (bioavailable and total) but the microbial metabolic quotient was significantly and positively correlated with all forms of arsenic, indicating arsenic induced stress to the soil microbial community. This may be due to part of the microbial biomass, which is located in the inner parts of the micro-aggregates of soil, which is affected by arsenic accumulates present in soil particles. Linear regression analysis revealed that the bioavailable arsenic exerted greater inhibitory effect on the soil microbial population than the total arsenic content of soils. Water-soluble arsenic showed more inhibitory effect than NaHCO(3) extractable form, in their association with biological properties of the contaminated soils. Water-soluble form of arsenic was much more toxic than insoluble forms. This signified that with increase in bioavailability, the arsenic exerted more inhibitory effect on these parameters. It is thus suggested that the microbial biomass, fluorescein diacetate and dehydrogenase activity alone and expressed on a soil organic matter basis along with the soil respiration parameters can be helpful in assessing the effects of arsenic on the size and activity of microbial biomass in soils.  相似文献   

17.
Natural radioactive materials under certain conditions can reach hazardous radiological levels. So, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks and to have a baseline for future changes in the environmental radioactivity due to human activities. The natural radionuclide (226Ra, 232Th, and 40K) contents in soil were determined for 26 locations around the Upper Siwaliks of Kala Amb, Nahan and Morni Hills, Northern India, using high-resolution gamma-ray spectrometric analysis. It was observed that the concentration of natural radionuclides viz., 226Ra, 232Th and 40K, in the soil varies from 28.3 ± 0.5 to 81.0 ± 1.7 Bq kg−1, 61.2 ± 1.3 to 140.3 ± 2.6 Bq kg−1 and 363.4 ± 4.9 to 1002.2 ± 11.2 Bq kg−1 respectively. The total absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranged from 71.1 to 162.0 nGy h−1. The radium equivalent (Req) and the external hazard index (Hex), which resulted from the natural radionuclides in soil, were also calculated and found to vary from 149.4 to 351.8 Bq kg−1and from 0.40 to 0.95 respectively. These values in Upper Siwaliks area were compared with that from the adjoining areas of Punjab. The radium equivalent activities in all the soil samples were lower than the limit (370 Bq kg−1) set in the Organization for Economic Cooperation and Development (OECD) report and the dose equivalent was within the safe limit of 1 mSv y−1.  相似文献   

18.
The south east basin of France shelters deep CO2 reservoirs often studied with the aim of better constraining geological CO2 storage operations. Here we present new soil gas data, completing an existing dataset (CO2, 222Rn, 4He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO2 reservoir at present time.Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222Rn but not CO2. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO2 and 222Rn concentrations still exist, it is suggested that 222Rn migration is also CO2 dependent in non-leaking areas - diffusion dominated systems.  相似文献   

19.
Microbiological quality of surface waters can be affected by microbial load in runoff from grazing lands. This effect, with other factors, depends on the survival of microorganisms in animal waste deposited on pastures. Since temperature is a leading environmental parameter affecting survival, it indirectly impacts water microbial quality. The Q10 model is widely used to predict the effect of temperature on rates of biological processes, including survival. Objectives of this work were to (i) evaluate the applicability of the Q10 model to Escherichia coli inactivation in bovine manure deposited on grazing land (i.e., cowpats) and (ii) identify explanatory variables for the previously reported E. coli survival dynamics in cowpats. Data utilized in this study include published results on E. coli concentrations in natural and repacked cowpats from research conducted the U.S. (Virginia and Maryland), New Zealand, and the United Kingdom. Inspection of the datasets led to conceptualizing E. coli survival (in cowpats) as a two-stage process, in which the initial stage was due to growth, inactivation or stationary state of the population and the second stage was the approximately first-order inactivation. Applying the Q10 model to these datasets showed a remarkable similarity in inactivation rates, using the thermal time. The reference inactivation rate constant of 0.042 (thermal days) 1 at 20 °C gave a good approximation (R2 = 0.88) of all inactivation stage data with Q10 = 1.48. The reference inactivation rate constants in individual studies were no different from the one obtained by pooling all data (P < 0.05). The rate of logarithm of the E. coli concentration change during the first stage depended on temperature. Duration of the first stage, prior to the first-order inactivation stage and the initial concentration of E. coli in cowpats, could not be predicted from available data. Diet and age are probable factors affecting these two parameters however, until their environmental and management predictors are known, microbial water quality modeling must treat them as a stochastic source of uncertainty in simulation results.  相似文献   

20.
Although the coastal salt marshes of Arabian Gulf have been altered extensively by human development activities, there is a paucity of data describing changes in the distribution and abundance of native coastal plant communities. The main objectives of this study are to determine vegetation condition, size structure, and conservation status of Nitraria retusa, a medicinal and salt-tolerant shrub, in disturbed and non-disturbed coastal salt marshes of Kuwait. Size measurements of Nitraria shrubs and nabkas, which are mounds of sediment developed around shrubs, were carried out in 50 quadrats (20 × 20 m2), randomly selected inside and outside Sabah Al-Ahmad Natural Reserve. Species richness and soil properties of nabkas and interspaces, the open areas between the nabkas, were also measured. The results revealed that nabkas of Nitraria in non-disturbed sites are more stable and rich in plant diversity than those in disturbed sites. Mean height and mean canopy diameter of Nitraria shrubs, total plant cover, and species richness are significantly higher in non-disturbed sites than disturbed sites, which indicate the positive influences of conservation for long term on vegetation structure and species richness. The results of soil analyses indicate the important role of nabkas in providing refuges for plant life and species diversity. The present study indicates that more than 50 % of the N. retusa community has been lost during the last few decades. Therefore, N. retusa should be considered an endangered species in Kuwait. The reduction in vegetation cover, a decline in species richness, and the overall degradation of salt marshes are attributed to human development activities along the coast of Kuwait. Effective conservation actions for threatened species in degraded coastal salt marshes of this region include establishment of protective enclosures, prohibitions on development that adversely affects native plant communities, and the planting native salt-tolerant shrubs to facilitate regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号