首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
De Lisi R  Lazzara G  Milioto S  Muratore N 《Chemosphere》2007,69(11):1703-1712
Laboratory-scale studies were aimed at elucidating the physico-chemical aspects on the removal process of crystal violet (CV) from waters and solid substrates. The laponite clay (RD) and sand were chosen for the double aim at investigating them as CV adsorbents for water treatment and as substrates which mime the soil components. Sand is very effective in removing CV from waters. The cyclodextrins (CDs) were exploited as solubility-enhancement agents to remove CV from the solid substrates. They are powerful solvent media because they extract the CV from sand forming water-soluble CV/CD inclusion complexes and do not show affinity for sand. Optimum performance was shown by the modified CDs (i.e. hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin). A linear correlation between the logarithm of the equilibrium constant for the CV/CD inclusion complexes formation (Kcpx) and the maximum amount of CV extracted from sand in the columns experiments at a flow rate of 1.5 ml min−1 was drawn. This relationship predicts that CDs with Kcpx < 180 M−1 are not suitable for CV removal from sand. CDs failed to displace CV from RD because they generate the formation of RD clusters where CV remains entrapped.  相似文献   

2.
Watson SB  Ridal J  Zaitlin B  Lo A 《Chemosphere》2003,51(8):765-773
Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.  相似文献   

3.
Wang X  Liu X  Wang H  Dong Q 《Chemosphere》2007,67(11):2156-2162
A species of bacteria that is capable of utilizing imazaquin as the sole carbon source was isolated from soil with repeated imazaquin applications, and was identified as Arthrobacter crystallopoietes (designated as strain “WWX-1”). This isolate degrades imazaquin as high as 200 μg ml−1, and the estimated dissipation half-lives increased from 1.51 d for the treatment at 50 μg ml−1 to 4.75 d for 200 μg ml−1. Optimal growth of WWX-1 in mineral salt medium with 50 μg ml−1 imazaquin was obtained at 35 °C and a pH of 5.0. Growth of WWX-1 was also observed in mineral salt medium with the addition of other imidazolinone herbicides such as imazethapyr and imazapyr, but not with different classes of herbicides such as metsulfuron-methyl. Two imazaquin metabolites were detected, and spectral analysis with HPLC–MS, 1H NMR, and IR revealed one metabolite with a molecular weight (MW) of 199 as quinoline-2,3-dicarboxylic anhydride. We propose that A. crystallopoietes (WWX-1) could serve as an efficient biodegradation system for remediation of water and soils that are heavily contaminated with imazaquin or other structurally similar chemicals.  相似文献   

4.
Chuang YH  Wang GS  Tung HH 《Chemosphere》2011,85(7):1146-1153
It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development—a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Clthreshold) for biodegradation was estimated at 0.46-0.5 mg L−1. The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Clthreshold influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.  相似文献   

5.
Campo P  Zhao Y  Suidan MT  Venosa AD  Sorial GA 《Chemosphere》2007,68(11):2054-2062
The aerobic biodegradation of five triacylglycerols (TAGs), three liquids [triolein (OOO), trilinolein (LLL), and trilinolenin (LnLnLn)] and two solids [tripalmitin (PPP) and tristearin (SSS)] was studied in water. Respirometry tests were designed and conducted to determine the biochemical oxygen demand (BOD) parameters of the compounds. In the case of the solid lipids, the degradation process was limited by their extremely non-polar nature. When added to water, PPP and SSS formed irregular clumps or gumballs, not a fine and uniform suspension required for the lipase activity. After 30 days, appreciable mineralization was not achieved; therefore, first-order biodegradation coefficients could not be determined. The bioavailability of the liquid TAGs was restricted due to the presence of double bonds in the fatty acids (FAs). An autoxidation process occurred in the allylic chains, resulting in the production of hydroperoxides. These compounds polymerized and became non-biodegradable. Nevertheless, the non-oxidized fractions were readily mineralized, and BOD rate constants were estimated by non-linear regression: LLL (k = 0.0061 h−1) and LnLnLn (k = 0.0071 h−1) were degraded more rapidly than OOO (k = 0.0025 h−1). Lipids strongly partitioned to the biomass and, therefore, Microtox® toxicity was not observed in the water column. However, EC50 values (<15% sample volume) were measured in the solid phase.  相似文献   

6.
A biofilter using granular activated carbon with immobilized Paracoccus sp. CP2 was applied to the elimination of 10–250 ppm of trimethylamine (TMA), dimethylamine (DMA), and methylamine (MA). The results indicated that the system effectively treated MA (>93%), DMA (>90%), and TMA (>85%) under high loading conditions, and the maximum degradation rates were 1.4, 1.2, and 0.9 g-N kg−1 GAC d−1. Among the three different amines treated, TMA was the most difficult to degrade and resulted in ammonia accumulation. Further study on TMA removal showed that the optimal pH was near neutral (6.0–8.0). The supply of high glucose (>0.1%) inhibited TMA removal, maybe due to substrate competition. However, complete TMA degradation was achieved under the co-immobilization of Paracoccus sp. CP2 and Arthrobacter sp. CP1 (96%). Metabolite analysis results demonstrated that the metabolite concentrations decreased by a relatively small 27% while the metabolite apparently increased by heterotrophic nitrification of Arthrobacter sp. CP1 in the co-immobilization biofilter.  相似文献   

7.
Biodegradation of nonylphenol in sewage sludge   总被引:18,自引:0,他引:18  
Chang BV  Chiang F  Yuan SY 《Chemosphere》2005,60(11):1652-1659
We investigated the effects of various factors on the aerobic degradation of nonylphenol (NP) in sewage sludge. NP (5 mg/kg) degradation rate constants (k1) calculated were 0.148 and 0.224 day−1 for the batch experiment and the bioreactor experiment, respectively, and half-lives (t1/2) were 4.7 and 3.1 days, respectively. The optimal pH value for NP degradation in sludge was 7.0 and the degradation rate was enhanced when the temperature was increased and when yeast extract (5 mg/l) and surfactants such as brij 30 or brij 35 (55 or 91 μM) were added. The addition of aluminum sulfate (200 mg/l) and hydrogen peroxide (1 mg/l) inhibited NP degradation within 28 days of incubation. Of the microorganism strains isolated from the sludge samples, we found that strain CT7 (identified as Bacillus sphaericus) manifested the best degrading ability.  相似文献   

8.
Neamtu M  Siminiceanu I  Kettrup A 《Chemosphere》2000,40(12):1407-1410
The photodegradation of five representative nitromusk compounds in water has been performed in a stirred batch photoreactor with a UV low-pressure immersed mercury lamp, at constant temperature and different doses of hydrogen peroxide. The rate constants have been calculated on the basis of experimental data and a postulated first-order kinetic model. The rate constants, at 298 K and a dose of 1.1746 μmol l−1 H2O2 ranges from 0.3567 × 10−3 s−1 for musk tibetene, to 1.785 × 10−3 s−1 for musk ambrette.  相似文献   

9.
We report the effects of 1,2- and 1,4-dichlorobenzene (1,2-DCB and 1,4-DCB) on the aquatic macrophyte Ceratophyllum demersum. We evaluated the response of the antioxidant system through the assay of glutathione reductase (GR), guaiacol peroxidase (POD) and glutathione peroxidase (GPx). Additionally, the effect of DCBs on the detoxication system by measuring the activity of glutathione-S-transferase (GST) was evaluated.

C. demersum showed elevated GST activities when exposed to 10 and 20 mg l−1 1,2-DCB, and at 10 mg l−1 for 1,4-DCB. These results show that glutathione conjugation take place at relatively high concentrations of both isomers. Significantly increased activities of POD were also detected in C. demersum exposed to concentrations above 5 mg l−1 of the corresponding isomer.

The GR activity was enhanced in plants exposed to 1,2-DCB (5 mg l−1) and 1,4-DCB (10 mg l−1). GPx was also significantly increased in exposures to the corresponding isomer, each at a concentration of 10 mg l−1. However, plants exposed to low doses of 1,4-DCB (1 mg l−1) showed significantly decreased activities of both enzymes GR and GPx.

Consequently, it is clear that the exposure of the aquatic macrophyte C. demersum to DCBs is able to cause an activation of the antioxidant system, showing an isomer specific pattern, which suggests that the defence system of this plant is playing an important role in scavenging ROS, helping to protect the organism against adverse oxidative effects generated by the prooxidant action of the tested xenobiotics. Furthermore, increased GST activities give indirect evidence on the conjugation of either DCBs or the corresponding metabolites during phase II of detoxication, which supports the elimination process of toxic metabolites from cells of C. demersum.  相似文献   


10.
A new Aeromonas bioassay is described to assess the potential harmful effects of the glyphosate-based herbicide, Roundup®, in the Albufera lake, a protected area near Valencia. Viability markers as membrane integrity, culturability and β-galactosidase production of Aeromonas caviae were studied to determine the influence of the herbicide in the bacterial cells. Data from the multifactor analysis of variance test showed no significant differences (P > 0.05) between A. caviae counts of viability markers at the studied concentrations (0, 50 and 100 mg l−1 of glyphosate).

The effects of Roundup® on microbial biota present in the lake were assessed by measuring the number of indigenous mesophilic Aeromonas in presence of different amounts of the herbicide at 0, 50 and 100 mg l−1 of glyphosate. In samples containing 50 and 100 mg l−1 of glyphosate a significant (P < 0.05) increase in Aeromonas spp. counts and accompanying flora was observed.

The acute toxicity of Roundup® and of Roundup® diluted with Albufera lake water to Microtox® luminescent bacterium (Vibrio fischeri) also was determined. The EC50 values obtained were 36.4 mg l−1 and 64.0 mg l−1 of glyphosate respectively. The acidity (pH 4.5) of the herbicide formulation was the responsible of the observed toxicity.  相似文献   


11.
Isoprene emission from tropical trees in Okinawa Island, Japan   总被引:1,自引:0,他引:1  
This study surveyed isoprene emission from 42 indigenous and exotic tropical trees in subtropic Okinawa, Japan. Of the 42 trees studied, 4 emitted isoprene at a rate in excess of 20 μg g−1 h−1, and 28 showed the rates of 1–10 μg g−1 h−1. The remainder emitted less than 1 μg g−1 h−1. The majority of trees in this study may therefore fall within the lower emitting species. However, species in Moraceae that is indigenous in Okinawa emitted isoprene at relatively higher rates with an average of 14.2 μg g−1 h−1. The highest emission rate of 107.1 μg g−1 h−1 for Ficus virgata yielded the area basis rate of 47.4 nmol m−2 s−1, which is almost equivalent to the rate of high emitting species. Furthermore, a linear relationship between light intensity and isoprene emission was noted with Ficus virgata up to 1700 μmol m−2 s−1. These findings may show the potential importance of subtropical areas as sources of isoprene to the atmosphere.  相似文献   

12.
The combined electrochemical oxidation-solar-light/immobilized TiO2 film process was conducted to degrade an azo dye, Reactive Black 5 (RB5). The toxicity was also monitored by the Vibrio fischeri light inhibition test. The electrochemical oxidation rapidly decolorized RB5 (55, 110 μM) with a supporting electrolyte of 2 g l−1 NaCl at current density 277 A m−2 and pH 4. However, TOC mineralization and A310 removal were low. Additionally, the treated solution showed high biotoxicity. RB5 at 110 μM significantly retarded the de-colorization efficiency by using the solar-light/immobilized TiO2 film process. The combined electrochemical oxidation-solar-light/immobilized TiO2 process effectively increased the removal of color, A310, and TOC. The toxicity was also significantly reduced after 3 h of solar irradiation. The results indicated that the low-cost combined process is a potential technique for rapid treatment of RB5.  相似文献   

13.
Hu Z 《Chemosphere》2008,72(2):312-318
The biokinetics of attached and suspended bacteria are an essential component of activated sludge models, anaerobic digestion models and biofilm models. These parameters are often assumed or “confirmed” based on the goodness-of-fit of the bioprocess models. Using a microbial fuel cell with a baffled reactor chamber, the attached- and mixed-growth microbial decay coefficients were evaluated under anaerobic conditions. The capability for real-time voltage recording allows easy and accurate measurement of the anaerobic microbial decay coefficients (bL, lysis-regrowth approach), which were determined to be 0.11 ± 0.01 and 0.15 ± 0.01 d−1 for attached (to anode) and mixed (present in the anode chamber) growth microorganisms, respectively. The corresponding half-saturation constants using glucose as a substrate were 204 ± 10 and 123 ± 1 mg COD l−1. Hence, like an oxygen uptake rate-based approach to measure the microbial kinetics under aerobic conditions, the electrochemical recording provides an attractive method to measure anaerobic microbial decay coefficients.  相似文献   

14.

Introduction  

Initial geosmin degradation was closely related to water temperature and natural geosmin concentration of sampling environment. Here, for the first time, we evaluated the biodegradation of geosmin by microorganisms in biofilm from biological treatment unit of actual potable water treatment plant.  相似文献   

15.
Xue N  Xu X  Jin Z 《Chemosphere》2005,61(11):951-1606
For screening 31 potential or suspected endocrine-disrupting pesticides in water and surface sediments, a multiresidue analysis method based on gas chromatography with electron capture detection (GC/ECD) was developed. Solid phase extraction (SPE) technology with Oasis® HLB cartridge was also applied in sample extraction. The relevant mean recoveries were 70–103% and 71–103% for water and sediment, respectively. Relative standard deviations (RSD) are 2.0–7.0%, 4.0–8.0% for water and sediment, respectively. Thirty one pesticides (-HCH, β-HCH, γ-HCH, δ-HCH, hexachlorobenzene (HCB), aldrin, heptachlor, endosulfan I & II, p,p′-DDD, o,p′-DDT, p,p′-DDT, p,p′-DDE, endrin aldehyde, endosulfan sulphate, methoxychlor, hepachlor epoxide, -chlordane, γ-chlordane, dieldrin, endrin, dicofol, acetochlor, alachlor, metolachlor, chlorpyriphos, nitrofen, trifluralin, cypermethrin, fenvalerate, deltamethrin) in water and surface sediment samples from Beijing Guanting reservoir were analyzed. Concentrations of pesticides ranged from 7.59 to 36.0 ng g−1 on a dry wt. basis for sediment samples, from 279.3 to 2740 ng l−1 for pore waters and from 48.8 to 890 ng l−1 for water samples, respectively, with a mean concentration of 10.7 ng g−1 in sediment, 735 ng l−1 in pore water and 295 ng l−1 in water, respectively. The data obtained provides information on the levels and sources of endocrine-disrupting pesticides in Guanting reservoir. These results underscore the need to improved environmental protection measures in order to reduce the exposure of the population and aquatic biota to these endocrine-disrupting compounds.  相似文献   

16.
Eapen S  Singh S  Thorat V  Kaushik CP  Raj K  D'Souza SF 《Chemosphere》2006,65(11):2071-2073
Potential of plants to remove radionuclides/toxic elements from soils and solutions can be successfully applied for removal of important radionuclides such as strontium-90 (90Sr) and cesium-137 (137Cs). When uptake of 137Cs and 90Sr by Calotropis gigantea plants incubated in distilled water spiked with the radionuclides either alone or in combination was studied, it was found to have a high efficiency for the removal of 90Sr, with 90% being removed from solutions (5 × 103 kBq l−1) within 24 h of incubation. However, in case of 137Cs, about 44% could be removed from solutions (5 × 103 kBq l−1) at the end of 168 h of incubation. Accumulation of 90Sr and 137Cs was higher in roots compared to shoots. The plants could remediate both 90Sr and 137Cs when they were added together to the solution. When two months old plants were incubated in low level nuclear waste, 99% of activity disappeared at the end of 15 days. The present study suggests that C. gigantea could be used as a potential candidate plant for phytoremediation of 90Sr and 137Cs.  相似文献   

17.
The aim of this study was to characterize the biological treatment of heavy metal-contaminated water employing Myriophyllum species, namely M. spicatum L. and M. triphyllum. Both species were found to be capable of removing cadmium (Cd) from water; the latter significantly outperformed. Myriophyllum species were treated with 0, 2, 4, 6, 8, 16 mg l−1 cadmium solutions for 24, 48, 72, 96 h, respectively. Cd uptake of both species was the lowest at 2 mg l−1 and the highest at 16 mg l−1. Concentration related cadmium stress on both species exhibit significant difference on pigment levels (8–16 mg l−1). These findings contribute to the fact that submerged aquatic plants can be used for the removal of heavy metals.  相似文献   

18.
Delphin JE  Chapot JY 《Chemosphere》2006,64(11):1862-1869
A field experiment was conducted on a Calcaric Cambisol soil to study the consequences of the penetration depth and properties of pesticides on the risk of subsequent leaching. Three pesticides with different mobility characteristics and bromide were injected at 30 cm (where soil organic matter (OM) was 2%) and 80 cm (soil OM 0.5%) on irrigated plots without a crop. The migration of injected solutes was assessed for two years by sampling the soil solution using six porous cups installed at 50 and 150 cm depth and by relating solute contents to drainage water flux estimated by the STICS model (Simulateur mulTIdisciplinaire pour les Cultures Standard). Pesticides injected at 30 cm were strongly retained so that no metolachlor or diuron was detected at 50 and 150 cm. The ratio of atrazine peak concentration in the soil solution to concentration in the injected solution (C/C0) was 1 × 10−3 and 0.2 × 10−3, respectively, at 50 and 150 cm. When injected at 80 cm, (C/C0) of atrazine, metolachlor and diuron were 10 × 10−3, 1 × 10−3 and 0.3 × 10−3 at 150 cm, respectively; 1/(C/C0) was correlated with Koc values reported from databases. The ratio of drainage volume to the amount of water at field capacity in the soil layer between the injection point at 30 cm and the water sampling level (V/V0) at 50 and 150 cm was 0.6 and 0.9, respectively, for bromide and 1.6 and 1.0 for atrazine. V/V0 of the injected solutes at 80 cm was for bromide, atrazine, metolachlor and diuron 0.6, 0.9, 1.2 and 1.7, respectively; pesticide V/V0 was correlated with Koc. The retardation factor was a good indicator of migration risk, but tended to overestimate retardation of molecules with high Koc. Atrazine desorption represented an additional leaching risk as a source of prolonged low contamination. The large variability in soil solution of bromide and pesticide concentrations in the horizontal plane was attributed to flow paths and clods in the tilled soil layer. This heterogeneity was assumed to channel water fluxes into restricted areas and thereby increase the risk of groundwater contamination. The methodology used in the field proves to provide consistent results.  相似文献   

19.
Borovicka J  Randa Z  Jelínek E 《Chemosphere》2006,64(11):1837-1844
Species of macrofungi (mushrooms) were collected from clean areas and analyzed for their antimony content. These were compared to species collected from extremely polluted areas in the vicinity of a lead smelter and on mine and slag dumps. Antimony content was determined using long-term instrumental neutron activation analysis (INAA). Ectomycorrhizal and terrestrial saprobic macrofungi were examined. Antimony content of macrofungi from the clean areas was mostly less than 100 μg kg−1 (dry mass). The highest concentrations (units of mg kg−1) were found in various species of the ectomycorrhizal genera Chalciporus and Suillus. Antimony contents of macrofungi growing in the polluted areas were considerably higher. The highest content was found in a single collection of Chalciporus piperatus (1423 mg kg−1).  相似文献   

20.
Subbiah D  Kala S  Mishra AK 《Chemosphere》2005,61(11):1580-1586
The fluorescence spectroscopic behavior of bromadiolone (anticoagulant rodenticide), a substituted 4-hydroxycoumarin derivative, was investigated in water and in organized media like micelles and cyclodextrins. A detailed study on various photophysical parameters like fluorescence intensity (IF), quantum yield (), lifetime (τ) and steady state fluorescence anisotropy (r) of bromadiolone in aqueous and in organized media was carried out. Bromadiolone in aqueous solution was observed to be in an aggregated state, thereby showing weak emission due to self-quenching. Marked enhancement of fluorescence intensity was observed in organized media like micelles and β-cyclodextrin. A preliminary investigation has been done to find out whether this enhancement of fluorescence can be used to develop a sensitive analytical method for determination of bromadialone in aqueous media. A linear relationship between the fluorescence intensity and concentration of bromadiolone was observed in the range of 0.15–7.9 μg ml−1 in cetyltrimethylammonium bromide (CTAB) and 0.5–26.4 μg ml−1 in β-cyclodextrin medium. The lower detection limit was found to be 37 ng ml−1 in presence of CTAB and 23 ng ml−1 in β-cyclodextrin. Comparison with 4-hydroxycoumarin, an unsubstituted analogue, was made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号