首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Data on deposition and streamwater chemistry, obtained for the upper catchment of the River Duddon in the 1970s and 1980s, are reviewed. These data, together with soil chemical data, are used to deduce key processes in the deposition-catchment interaction, the analysis being based on current concepts of acidification. The processes are incorporated into a steady-state model that allows streamwater compositions to be calculated. The large baseflow pH range (5-7) of Duddon streams is accounted for in the model by a range of base cation weathering rates. Other processes invoked are evapotranspiration, the uptake of nitrogen by plants, dissolution of Al(OH)(3) in the mineral soil, precipitation of Al(OH)(3) in the baserock zone and in streamwater, Al(3+) hydrolysis, and reactions of the carbonate system. Both cation exchange and sulphate adsorption are ignored, because they are assumed to influence rates-of-change between steady states, but not steady-state water compositions per se. The model can be used to estimate variations in streamwater composition with flow. Model calculations suggest that a 50% decrease in depositional acidifying components (sulphur oxides and NH(4)(+)) would result in increases of up to 1 pH unit in streamwaters with present-day baseflow pH values of 5 or less. It appears that water quality in the upper Duddon is currently more sensitive to inputs of NH(4)(+) than of H(2)SO(4). To improve the reliability of model predictions, more information is required on (a) the pH dependence of base cation weathering, (b) transformations involving nitrogen, (c) aluminium chemistry and (d) partial pressures of CO(2) in soil and baserock.  相似文献   

2.
Acid rain and acidification in China: the importance of base cation deposition   总被引:42,自引:0,他引:42  
Acid deposition has been recognized as a serious environmental problem in China. Most acid deposition studies have focused on sulfur deposition and the pH of precipitation. However, as high concentration of alkaline dust is an important feature of the atmosphere in large parts of China, base cation deposition must be taken into account when discussing possible effects on soils and vegetation from acid deposition. We estimate the deposition of sulfur as well as calcium, i.e. the dominating anion and cation, on a regional scale in China using data both from measurements and modeling. The ratio of sulfur/calcium in deposition is then used as an indicator for identifying areas where deposition acidity exceeds alkalinity, and where soils may be at risk to acidification. The dynamic soil acidification model MAGIC is applied with data from two sites receiving high deposition loads in southwest China. The model predictions indicate that considerable soil acidification has been going on for the last decades due to acid deposition inputs. Effects on the spatial distribution of acidic deposition in China, using different future deposition scenarios, are illustrated. As the size of the anthropogenic fraction of the base cation deposition is unknown, different possible future trends in calcium deposition were used. Soil response, according to the model, using different combinations of sulfur and calcium deposition scenarios is shown. Applying the most strict measures to reduce sulfur emission will almost eliminate the acid deposition problem; however, such a scenario is not economically feasible in the short term. A strict, but possibly realistic, future scenario for sulfur may be enough to keep the situation at the present level, assuming only moderate reductions in calcium deposition. With large decreases in base cation deposition, increased soil acidification can be expected even with considerable sulfur emission reductions.  相似文献   

3.
A dynamic soil chemistry model was used to explain the observed decrease in soil base saturation between 1949 and 1984 at three stands in southern Sweden. The results show that acid deposition has caused soil acidification. The model, SAFE (Soil Acidification in Forest Ecosystems), includes the fundamental physical processes such as leaching and accumulation, and chemical processes such as cation exchange, mineral weathering, nutrient uptake and solute equilibrium reactions. The sources and sinks of base cations in the soil system were quantified, showing that weathering, deposition of base cations and depletion of exchangeable base cations supply cations to the soil solution in similar amounts in the upper 1 m during the acidification phase. This demonstrates that budget studies alone cannot be used to distinguish between long-term capacity to resist acidification, represented by weathering, from short-term buffering caused by cation exchange.  相似文献   

4.
The concept of critical loads has been generally accepted throughout Europe, and increasingly in Asian countries and the rest of the world, as providing the data which forms the basis for international negotiations on abatement strategies for emissions of acidifying pollutants. Central to the determination of quantitative critical loads of acidity for forests (and other ecosystems) is the rate at which the minerals in the soil weather or dissolve. Seven methods for determining these rates on a regional basis for the production of critical load maps have been suggested by the official bodies which are responsible for co-ordinating the European critical load mapping efforts. These methods are largely correlations which require a knowledge of the soil parent material and/or the soil mineralogy. The purpose of this paper is to review these weathering rate calculation methods and to assess whether it is currently possible to calculate numerically accurate critical loads for the production of regional critical load maps. A consideration of the data used to generate these methods and comparisons of the weathering rates calculated using various methods leads to the conclusion that at present it is not. Further work is needed to develop and maintain the initial credibility of critical loads both scientifically and as an aid to policy decisions.  相似文献   

5.
BACKGROUND: Most historical buildings in Bordeaux city are made of limestone. This yellowish-white rock is rather porous and highly sensitive to pollution. As a consequence of local weathering conditions, these buildings present a dark appearance due to the development of a superficial dark grey to black crust. METHODS: For the last decade, a campaign has been underway to clean these buildings. Eleven techniques of surface treatment have been used, including laser beam technology. As a contribution to the study of laser beam effects on stone buildings, two analytical methods have been used on clean versus unclean surfaces: Cathodoluminescence (CL) and Electron Paramagnetic Resonance (EPR), in addition to SEM-EDX and XRD. RESULTS: The black crust is composed of different types of particles: carbon porous micro-particles of industrial origin, atmospheric dust due to the erosion of soils and rocks, alumino-silicate particles from urban pollution; all these particles being cemented by gypsum. DISCUSSION: As far as heritage conservation is concerned, the laser surface treatment not only preserves the original patina of the stone, but also leaves surface smoothness unaltered. CONCLUSIONS AND PERSPECTIVES: CL and EPR data confirm that lasers--with highly controlled parameters--only get rid of the black crust and, thus, reveal the underneath layer, the so-called patina. This patina shows no luminescence, whereas the limestone on which it has grown shows a bright orange emission of CL. This indicates CL to be a fast and easy way to provide a high quality control for the restoration of polluted ancient stones.  相似文献   

6.
Acidification represents a growing threat to certain developing country ecosystems in tropical and subtropical climates. A methodology investigating the extent of acidification risks from sulfur emissions on a global scale is presented. Atmospheric transfer models have been used to calculate transfer and deposition of sulfur (using emissions for 1990 and a projection for 2050) and alkaline soil dust. A method to derive the relative sensitivity of terrestrial ecosystems is explained and preliminary critical load values are assigned. A range of values for critical loads and base cation deposition have been used to investigate uncertainty in maps depicting the excess of deposition above critical loads. These show an increasing risk of acidification in 2050 in extended regions of southern and eastern Asia, as well as parts of southern Africa, in comparison to 1990. Certain areas, especially in Asia, are shown at risk even when high values of critical load and base cation deposition are used.  相似文献   

7.
An assessment was made of the capacity of base cations to neutralize acid deposition and of the contribution of base cation deposition to forest nutrition in Europe. In large parts of southern Europe more than 50% of the potential acid deposition was found counteracted by deposition of non-sea salt Mg2+ + Ca2+ + K+. In central and northwestern Europe, base cation deposition usually amounted to less than 25% of the acid input. Smallest base cation deposition relative to potential acid deposition was found in southern Scandinavia, Denmark, northern Germany and The Netherlands. A similar spatial pattern was found for the neutralization of acid anions in precipitation. Whereas in Scandinavia weathering is the dominant supplier of base cation to forest soils, in eastern and southern Europe, forests mainly rely on atmospheric deposition for the supply of base cations. Using error propagation, the random and systematic error in acid neutralization capacity for an average grid cell of 10 × 20 km was estimated to equal 45–55% and 50–55%, respectively.  相似文献   

8.
The contribution of dry deposition to the total atmospheric input of acidifying compounds and base cations is of overwhelming importance. Throughfall measurements provide an estimate of the total deposition to forest soils, including dry deposition, but some uncertainties, related to the canopy interaction processes, affect this approach. We compared the concentrations and the fluxes of the main ions determined in wet-only, bulk and throughfall samples collected at five forest sites in Italy. The contribution of coarse particles deposited onto the bulk samplers was of prime importance for base cations, representing on average from 16% to 46% of the bulk deposition. The extent of this dry deposition depended on some geographical features of the sites, such as the distance from the sea and the annual rainfall. The possibility of applying specific bulk/wet ratios to estimate the wet deposition proved to be limited by the temporal variability of these ratios, which must be considered together with the spatial variability. A direct comparison of the dry contribution deriving from the bulk–wet and the throughfall–wet demonstrated that an extensive natural surface (forest canopy) performs better than a small synthetic surface (funnel of the bulk sampler) in collecting dry deposition of SO42−, NO3 and Na+. The canopy exchange model was applied to both bulk and wet data to estimate the contribution of dry deposition to the total input of base cations, and the uncertainty associated to the model discussed. The exclusive use of bulk data led to a considerable underestimation of base cation dry deposition, which varies among the study sites.  相似文献   

9.
Soil sensitivity to acidification in Asia: status and prospects   总被引:5,自引:0,他引:5  
Exceedance of steady-state critical loads for soil acidification is consistently found in southern China and parts of SE Asia, but there is no evidence of impacts outside of China. This study describes a methodology for calculating the time to effects for soils sensitive to acidic deposition in Asia under potential future sulfur (S), nitrogen (N), and calcium (Ca) emission scenarios. The calculations are matched to data availability in Asia to produce regional-scale maps that provide estimates of the time (y) it will take for soil base saturation to reach a critical limit of 20% in response to acidic inputs. The results show that sensitive soil types in areas of South, Southeast, and East Asia, including parts of southern China, Burma, Hainan, Laos, Thailand, Vietnam, and the Western Ghats of India, may acidify to a significant degree on a 0-50 y timescale, depending on individual site management and abiotic and biotic characteristics. To make a clearer assessment of risk, site-specific data are required for soil chemistry and deposition (especially base cation deposition); S and N retention in soils and ecosystems; and biomass harvesting and weathering rates from sites across Asia representative of different soil and vegetation types and management regimes. National and regional assessments of soils using the simple methods described in this paper can provide an appreciation of the time dimension of soil acidification-related impacts and should be useful in planning further studies and, possibly, implementing measures to reduce risks of acidification.  相似文献   

10.
China’s strategies to control acidifying pollutants and particulate matter (PM) may be in conflict for soil acidification abatement. Acidifying pollutant emissions are estimated for 2005 and 2020 with anticipated control policies. PM emissions including base cations (BCs) are evaluated with two scenarios, a base case applying existing policy to 2020, and a control case including anticipated tightened measures. Depositions of sulfur (S), nitrogen (N) and BCs are simulated and their acidification risks are evaluated with critical load (CL). In 2005, the area exceeding CL covered 15.6% of mainland China, with total exceedance of 2.2 Mt S. These values decrease in the base scenario 2020, implying partial recovery from acidification. Under more realistic PM control, the respective estimates are 17.9% and 2.4 Mt S, indicating increased acidification risks due to abatement of acid-neutralizing BCs. China’s anthropogenic PM abatement will have potentially stronger chemical implications for acidification than developed countries.  相似文献   

11.
An introduction to critical loads   总被引:1,自引:0,他引:1  
The critical loads approach to emission controls of gaseous pollutants is a concept with a short but eventful history. Despite difficulties with definitions and agreed values, its acceptance within the UN-ECE Convention on Long Range Transboundary Air Pollution has provided the impetus for developing methods to put critical loads to a practical use-the revision of the UNECE emission protocols for sulphur and nitrogen. Methodologies first focus upon quantifying a pollutant threshold at which harmful effects occur on particular sensitive receptors (usually biological species). This threshold is known as the critical load for deposited pollutants, and as the critical level for gaseous pollutants acting on receptors. To calculate a critical load, biological effects are usually 'translated' to critical chemical values, e.g. harmful effects on fish 'translate' to alkalinity or aluminium concentrations in water; thus, critical load calculations may be based upon the chemistry of a system. Such calculations may be performed using simple, steady-state models, whilst the use of more complex, dynamic models provides an insight into the past and future trends. Maps of critical loads can be drawn using calculated values, and maps of pollutant deposition data will then show geographical areas where critical loads are exceeded. Spatial emission-deposition models can identify sources contributing to areas of excess loads and quantify necessary emission reductions. Optimization procedures applied to such models can derive abatement strategies related to economic costs and critical load effects. The critical load calculations may also be used to underpin the setting of target loads; these are pollutant loads, determined by political agreement, which take account of social, economic and political considerations.  相似文献   

12.
Impacts of simulated acid rain on recalcitrance of two different soils   总被引:2,自引:0,他引:2  
Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH?2.0, whereas only cation exchange occurred above SAR pH?3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K+ and Mg2+ ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca2+?>?K+?>?Mg2+?>?Na+ for the Plinthudult and Ca2+?>?Mg2+?>?Na+?>?K+ for the Paleudalfs soil. The SARs above pH?3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH?2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.  相似文献   

13.
A concise modeling approach using long-term averaged meteorological data was developed to estimate site-specific concentrations of congeners of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) near a solid waste incinerator. This approach consists of calculation of atmospheric dispersion, dry and wet deposition of gaseous and particle-bound congeners, and non-steady-state concentrations in soil. The predictability of this approach was evaluated by comparison of calculated concentrations of congeners in soil with those measured at eight locations near a municipal solid waste incinerator (MSWI). The variation of these concentrations due to variability of meteorological parameters is small. A considerable number of mean values show good agreement with measured concentrations within a factor of three. The reasonable agreement between calculated and measured concentrations indicates that algorithms for the calculation of vapor-phase deposition and non-steady-state concentrations in soil must be included in the modeling approach for an accurate estimation of the concentrations of congeners of PCDD/Fs emitted from MSWIs to the atmosphere. For a detailed estimation of site-specific concentrations, it is important to specify the bulk density of soil in the evaluated area, together with meteorological parameters.  相似文献   

14.
15.
In this work we report the results for estimating the measurement uncertainty (MU) following up the application of two different approaches, relatively the top-down procedure, by using proficiency test data. We have focused the estimation on the olive oil matrix. We used the analytical data obtained from five selected editions of the Proficiency Tests (PTs, from 2007 to 2011) on pesticide residues in olive oil to estimate the MU. These PTs have been organized by Istituto Superiore di Sanità annually in cooperation with International Olive Council (IOC) since 1997. The number of participants in each trial ranged from 10 to 43. We used a total of 34 pesticide results. The expanded uncertainty U (c) was calculated using a covering factor k = 2 for a confidence interval of 95%. In the approach 1, the within–laboratory reproducibility standard deviation is combined with estimates of the method and laboratory bias using PTs data. In the approach 2, the way of estimating the MU is based only on the bias that the laboratory has obtained participating in a sufficient number of the IOC proficiency tests. Comparing the relative expanded uncertainty based on these different approaches we notice values quite constant and close, from 42% to 48%. Moreover, these calculated expanded uncertainties are less than the default value of 50% (corresponding to a 95% confidence level), adopted from European guidance document SANCO based on the fit-for-purpose relative standard deviation (FFP-RSD).  相似文献   

16.
Long-term (1860–2010) catchment mass balance calculations rely on models and assumptions which are sources of uncertainty in acidification assessments. In this article, we report on an application of MAGIC to model acidification at the four Swedish IM forested catchments that have been subject to differing degrees of acidification stress. Uncertainties in the modeled mass balances were mainly associated with the deposition scenario and assumptions about sulfate adsorption and soil mass. Estimated base cation (BC) release rates (weathering) varied in a relatively narrow range of 47–62 or 42–47 meq m−2 year−1, depending on assumptions made about soil cation exchange capacity and base saturation. By varying aluminum solubility or introducing a dynamic weathering feedback that allowed BC release to increase at more acidic pHs, a systematic effect on predicted changes in acid neutralizing capacity (ΔANC ca. 10–41 μeq l−1) and pH (ca. ΔpH = 0.1–0.6) at all sites was observed. More robust projections of future changes in pH and ANC are dependent on reducing uncertainties in BC release rates, the timing, and extent of natural acidification through BC uptake by plants, temporal changes in soil element pools, and fluxes of Al between compartments.  相似文献   

17.
The critical loads to streams, steady-state stream chemistry and catchment chemical weathering rate in 73 catchments has been determined in the state of Maryland, USA. It was calculated with the PROFILE model from chemical limits for biological indicators, soil mineralogy, soil texture, annual average temperature, average soil moisture, net long-term uptake of base cations and nitrogen to the vegetation, annual precipitation and runoff and deposition of sulphur and nitrogen precursors of acid deposition. The results show a full range of critical loads from very low values in the sensitive catchments of western Maryland and the Coastal Plain on the Chesapeake Bay, to insensitive catchments in the Fredrick Valley and Ridge and the Piedmont plain. The critical loads will be used as an input to an integrated regional assessment of the quantitative sensitivity of streams to acid rain, and the assessment of regional stream alkalinity response to different abatement strategies. The mapping of steady-state stream chemistry indicates that streams in Maryland are still acidfying under the present deposition load. Land-use seems to play an important role in maintaining neutral pH in many of the streams of Maryland.  相似文献   

18.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

19.
The base cations calcium, magnesium and potassium, have been observed to be declining in air and precipitation in both Europe and North America. There is good evidence that this is the result of declining emissions of fly ash from industrial plant, as a result of increased abatement and industrial decline. This may have the effect of offsetting the effects of declines in acidic emissions, in terms of net deposited acidity. In order to reconcile source strengths of base cations, an industrial emissions inventory of calcium, the dominant base cation in air and precipitation, has been compiled. The main sources identified were: cement plants; iron and steel plants; and coal combustion from both large and small boilers. The overall emission was calculated to be between approximately 750 and 800 ktonnes Ca yr-1. The dominant source was coal combustion from domestic and small boilers. Of the point sources, cement production dominated over coal combustion, and iron and steel plant. The emission factors used are very uncertain, which gives the inventory a large uncertainty. Furthermore, the emissions are compiled on a base year of 1990, and large changes have taken place in the industrial structuring of the largest contributing countries. Despite the uncertainties, the compilation of the inventory represents a vital first step in understanding the sources of deposited calcium and its effect on net deposited acidity.  相似文献   

20.
This paper describes a European wide assessment of element budgets, using available data on deposition, meteorology and soil solution chemistry at 121 Intensive Monitoring plots. Input fluxes from the atmosphere were derived from fortnightly or monthly measurements of bulk deposition and throughfall, corrected for canopy uptake. Element outputs from the forest ecosystem were derived by multiplying fortnightly or monthly measurements of the soil solution composition at the bottom of the root zone with simulated unsaturated soil water fluxes. Despite the uncertainties in the calculated budgets, the results indicate that: (i) SO4 is still the dominant source of actual soil acidification despite the generally lower input of S than N, due to the different behaviour of S (near tracer) and N (strong retention); (ii) base cation removal due to man-induced soil acidification is limited; and (iii) Al release is high in areas with high S inputs and low base status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号