共查询到12条相似文献,搜索用时 0 毫秒
1.
Characterizing sources of nitrate leaching from an irrigated dairy farm in Merced County, California
Martin L. van der Schans Thomas Harter Anton Leijnse Marsha C. Mathews Roland D. Meyer 《Journal of contaminant hydrology》2009,110(1-2):9-21
Dairy farms comprise a complex landscape of groundwater pollution sources. The objective of our work is to develop a method to quantify nitrate leaching to shallow groundwater from different management units at dairy farms. Total nitrate loads are determined by the sequential calibration of a sub-regional scale and a farm-scale three-dimensional groundwater flow and transport model using observations at different spatial scales. These observations include local measurements of groundwater heads and nitrate concentrations in an extensive monitoring well network, providing data at a scale of a few meters and measurements of discharge rates and nitrate concentrations in a tile-drain network, providing data integrated across multiple farms. The various measurement scales are different from the spatial scales of the calibration parameters, which are the recharge and nitrogen leaching rates from individual management units. The calibration procedure offers a conceptual framework for using field measurements at different spatial scales to estimate recharge N concentrations at the management unit scale. It provides a map of spatially varying dairy farming impact on groundwater nitrogen. The method is applied to a dairy farm located in a relatively vulnerable hydrogeologic region in California. Potential sources within the dairy farm are divided into three categories, representing different manure management units: animal exercise yards and feeding areas (corrals), liquid manure holding ponds, and manure irrigated forage fields. Estimated average nitrogen leaching is 872 kg/ha/year, 807 kg/ha/year and 486 kg/ha/year for corrals, ponds and fields respectively. Results are applied to evaluate the accuracy of nitrogen mass balances often used by regulatory agencies to assess groundwater impacts. Calibrated leaching rates compare favorably to field and farm scale nitrogen mass balances. These data and interpretations provide a basis for developing improved management strategies. 相似文献
2.
Tipping E Thacker SA Wilson D Hall JR 《Environmental pollution (Barking, Essex : 1987)》2008,152(1):41-49
During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g(-1)) than the ranker (17.0 g g(-1)), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m(-2) a(-1). 相似文献
3.
Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model 总被引:1,自引:0,他引:1
Kiese R Heinzeller C Werner C Wochele S Grote R Butterbach-Bahl K 《Environmental pollution (Barking, Essex : 1987)》2011,159(11):3204-3214
Simulations with the process oriented Forest-DNDC model showed reasonable to good agreement with observations of soil water contents of different soil layers, annual amounts of seepage water and approximated rates of nitrate leaching at 79 sites across Germany. Following site evaluation, Forest-DNDC was coupled to a GIS to assess nitrate leaching from German forest ecosystems for the year 2000. At national scale leaching rates varied in a range of 0–>80 kg NO3–N ha−1 yr−1 (mean 5.5 kg NO3–N ha−1 yr−1). A comparison of regional simulations with the results of a nitrate inventory study for Bavaria showed that measured and simulated percentages for different nitrate leaching classes (0–5 kg N ha−1 yr−1:66% vs. 74%, 5–15 kg N ha−1 yr−1:20% vs. 20%, >15 kg N ha−1 yr−1:14% vs. 6%) were in good agreement. Mean nitrate concentrations in seepage water ranged between 0 and 23 mg NO3–N l−1. 相似文献
4.
Often, there is a non-linear relationship between atmospheric dissolved inorganic nitrogen (DIN) input and DIN leaching that is poorly captured by existing models. We present the first application of the non-parametric classification and regression tree approach to evaluate the key environmental drivers controlling DIN leaching from European forests. DIN leaching was classified as low (<3), medium (3-15) or high (>15 kg N ha−1 year−1) at 215 sites across Europe. The analysis identified throughfall NO3− deposition, acid deposition, hydrology, soil type, the carbon content of the soil, and the legacy of historic N deposition as the dominant drivers of DIN leaching for these forests. Ninety four percent of sites were successfully classified into the appropriate leaching category. This approach shows promise for understanding complex ecosystem responses to a wide range of anthropogenic stressors as well as an improved method for identifying risk and targeting pollution mitigation strategies in forest ecosystems. 相似文献
5.
Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater 总被引:2,自引:0,他引:2
Schipper LA Barkle GF Hadfield JC Vojvodic-Vukovic M Burgess CP 《Journal of contaminant hydrology》2004,69(3-4):263-279
Denitrification walls are a practical approach for decreasing non-point source pollution of surface waters. They are constructed by digging a trench perpendicular to groundwater flow and mixing the aquifer material with organic matter, such as sawdust, which acts as a carbon source to stimulate denitrification. For efficient functioning, walls need to be permeable to groundwater flow. We examined the functioning of a denitrification wall constructed in an aquifer consisting of coarse sands. Wells were monitored for changes in nitrate concentration as groundwater passed through the wall and soil samples were taken to measure microbial parameters inside the wall. Nitrate concentrations upstream of the wall ranged from 21 to 39 g N m(-3), in the wall from 0 to 2 g N m(-3) and downstream from 19 to 44 g N m(-3). An initial groundwater flow investigation using a salt tracer dilution technique showed that the flow through the wall was less than 4% of the flow occurring in the aquifer. Natural gradient tracer tests using bromide and Rhodamine-WT confirmed groundwater bypass under the wall. Hydraulic conductivity of 0.48 m day(-1) was measured inside the wall, whereas the surrounding aquifer had a hydraulic conductivity of 65.4 m day(-1). This indicated that during construction of the wall, hydraulic conductivity of the aquifer had been greatly reduced, so that most of the groundwater flowed under rather than through the wall. Denitrification rates measured in the center of the wall ranged from 0.020 to 0.13 g N m(-3) day(-1), which did not account for the rates of nitrate removal (0.16-0.29 g N m(-3) day(-1)) calculated from monitoring of groundwater nitrate concentrations. This suggested that the rate of denitrification was greater at the upstream face of the wall than in its center where it was limited by low nitrate concentrations. While denitrification walls can be an inexpensive tool for removing nitrate from groundwater, they may not be suitable in aquifers with coarse textured subsoils where simple inexpensive construction techniques result in major decreases in hydraulic conductivity. 相似文献
6.
Minero C Maurino V Bono F Pelizzetti E Marinoni A Mailhot G Carlotti ME Vione D 《Chemosphere》2007,68(11):2111-2117
The effect of selected organic and inorganic compounds, present in snow and cloudwater was studied. Photolysis of solutions of nitrate to nitrite was carried out in the laboratory using a UVB light source. The photolysis and other reactions were then modelled. It is shown that formate, formaldehyde, methanesulphonate, and chloride to a lesser extent, can increase the initial formation rate of nitrite. The effect, particularly significant for formate and formaldehyde, is unlikely to be caused by scavenging of hydroxyl radicals. The experimental data obtained in this work suggest that possible causes are the reduction of nitrogen dioxide and nitrate by radical species formed on photooxidation of the organic compounds. Hydroxyl scavenging by organic and inorganic compounds would not affect the initial formation rate of nitrite, but would protect it from oxidation, therefore, increasing the concentration values reached at long irradiation times. The described processes can be relevant to cloudwater and the quasi-liquid layer on the surface of ice and snow, considering that in the polar regions irradiated snow layers are important sources of nitrous acid to the atmosphere. Formate and (at a lesser extent) formaldehyde are the compounds that play the major role in the described processes of nitrite/nitrous acid photoformation by initial rate enhancement and hydroxyl scavenging. 相似文献
7.
Kros J Frumau KF Hensen A de Vries W 《Environmental pollution (Barking, Essex : 1987)》2011,159(11):3171-3182
The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH3 deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH3 emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively. 相似文献
8.
Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil 总被引:38,自引:0,他引:38
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project. 相似文献
9.
Changes in the dynamics of inorganic N species transformations with depth have been investigated for seven soil profiles from a nitrogen-impacted ancient grassland on a nature reserve outside York in the UK, using incubation experiments. In five of the profiles, both ammonification and nitrification are occurring below the rooting zone, probably partly in response to the low C:N ratio in the soils. This contributes to elevated nitrate concentrations found in an adjacent stream. Accumulation of ammonium during incubation in the sub-soils of these five profiles suggests a high probability of ammonium leaching down the profiles as ammonium inputs and outputs at a given depth approach equilibrium. This ammonium may also be nitrified at depth. However, in the two profiles with the most acidic surface horizons, net mineralization was negligible or negative; some initial ammonium-N and ammonium-N produced during incubation were nitrified, so the loss in ammonium-N was closely balanced by nitrate-N production. 相似文献
10.
Pihl Karlsson G Akselsson C Hellsten S Karlsson PE 《Environmental pollution (Barking, Essex : 1987)》2011,159(12):3571-3582
Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO2 and NO2, have decreased. The SO4-deposition has decreased in parallel with the European emission reductions. Soil water SO4-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO3-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters. 相似文献
11.
Lisa A. Totten Georgiy Stenchikov Cari L. Gigliotti Nilesh Lahoti Steven J. Eisenreich 《Atmospheric environment (Oxford, England : 1994)》2006,40(40):7940-7952
Atmospheric transport and deposition of polychlorinated biphenyls (PCBs) is an important problem for ecosystems around the world. Data from several monitoring networks demonstrate that atmospheric PCB concentrations are dramatically elevated in urban areas compared to rural or background regions, such that these urban emissions of PCBs support the regional and global transport and deposition of PCBs to more remote areas. Identifying and controlling the sources of urban atmospheric PCBs is thus essential in minimizing the regional and global transport and deposition of these compounds. From December 1999 to November 2000, gas-phase PCB concentrations were measured at two monitoring locations, 8 km apart, within the New York City metropolitan area, at Jersey City and Bayonne, NJ. Concentrations, congener patterns, and temporal patterns of PCBs differ dramatically at the two sites, suggesting that a significant source of atmospheric PCBs exists within 8 km of the Bayonne site, resulting in spikes in gas-phase PCB concentration at Bayonne that are not observed at Jersey City. The Regional Atmospheric Model System (RAMS) coupled with the Hybrid Particle and Concentration Transport model (HYPACT) was used to estimate that the PCB source near Bayonne emits a flux of ΣPCBs on the order of 100 g d−1. Extrapolation of this source magnitude to the area of New York City suggests that this urban area emits at least 300 kg yr−1 ΣPCBs to the regional atmosphere, similar in magnitude to the flow of ΣPCB out of the Upper Hudson River into the New York/New Jersey Harbor. 相似文献
12.
Knowledge of the factors that influence the diffusion of contaminants, such as the diffusivity and the connected porosity, is crucial to modeling the long-term fate and transport of contaminants in subsurface systems with small or negligible advective flow, such as in fractured crystalline rock. Fractured rock is naturally heterogeneous, and hence, understanding the diffusivity of a molecule through this material (or the formation factor of the medium) becomes a complex problem, with critical concerns about the scale of laboratory measurements and about the spatial variability of these measurements relative to the scale needed for fate and transport modeling. This study employed both electrical and tracer-based laboratory methods to investigate the effects of scale and pore system connectivity on the diffusivity for volcanic matrix rock derived from the study site, a former underground nuclear test site at Amchitka Island, Alaska. The results of these investigations indicate a relatively well-connected pore system with scale effects generally limited to approximately 6 cm lengths and well-correlated to observed heterogeneous features. An important conclusion resulting from this study, however, is that there is a potential for the estimated diffusivity to be misrepresented by an order of magnitude if multiple samples or longer sample lengths are not used. Given the relatively large number of measurements resulting from these investigations, an analysis of the probability density function (PDF) of the diffusivity was possible. The PDF of the diffusivity was shown to generally follow a normal distribution for individual geologic layers. However, when all of the geologic layers are considered together, the distribution of the subsurface as a whole was shown to follow a lognormal distribution due to the order of magnitude differences amongst the layers. An understanding of these distributions is essential for future stochastic modeling efforts. 相似文献