首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volatilization of 14C-lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5-day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparanetly due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water on the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

2.
Abstract

Volatilization of 14C‐lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5‐day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparently due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water of the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

3.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

4.
Abstract

A simple technique was demonstrated for determining the potential for synthetic organics to stress microbial populations. Oxidized Crowley and Cecil soil materials were amended with varying concentrations of 2,4‐D and methyl parathion, flooded, and then analyzed for changes in pH, redox potential, and levels of soluble plus exchangeable Fe, Mn, and Zn, all of which may be directly or indirectly influenced by the activity of soil microorganisms. At the concentrations tested (up to 75 ppm), there was little effect of 2,4‐D, but methyl parathion apparently did affect microbial activity contributing to changes in the measured soil properties upon flooding. This approach may be a useful technique for screening various compounds for their potential to stress microbial activity that, for many researchers, would be easier than direct observations of microbial parameters such as population numbers and classifications, and enzyme levels.  相似文献   

5.
The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective K f values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation.  相似文献   

6.
Liang C  Bruell CJ  Marley MC  Sperry KL 《Chemosphere》2004,55(9):1225-1233
In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a redox potential of 2.6 V, which can potentially destroy organic contaminants. In this laboratory study persulfate oxidation of dissolved trichloroethylene (TCE) was investigated in aqueous and soil slurry systems under a variety of experimental conditions. A chelating agent (i.e., citric acid) was used in attempt to manipulate the quantity of ferrous ion in solution by providing an appropriate chelate/Fe2+ molar ratio. In an aqueous system a chelate/Fe2+ molar ratio of 1/5 (e.g., S2O8(2)-/chelate/Fe2+/TCE ratio of 20/2/10/1) was found to be the lowest acceptable ratio to maintain sufficient quantities of Fe2+ activator in solution resulting in nearly complete TCE destruction after only 20 min. The availability of Fe2+ appeared to be controlled by adjusting the molar ratio of chelate/Fe2+. In general, high levels of chelated ferrous ion concentrations resulted in faster TCE degradation and more persulfate decomposition. However, if initial ferrous ion contents are relatively low, sufficient quantities of chelate must be provided to ensure the chelation of a greater percentage of the limited ferrous ion present. Citric acid chelated ferrous ion appeared effective for TCE degradation within soil slurries but required longer reaction times. Additionally, the use of citric acid without the addition of supplemental Fe2+ in soil slurries, where the citric acid apparently extracted native metals from the soil, appeared to be somewhat effective at enhancing persulfate oxidation of TCE over extended reaction times. A comparison of different chelating agents revealed that citric acid was the most effective.  相似文献   

7.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   

8.
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.  相似文献   

9.
The influence of temperature and solar radiations on the rapid dissipation of DDT from tropical soils was studied by quantifying volatilisation, mineralisation, binding and degradation of ((14)C)-p,p'-DDT in a sandy loam soil. The bulk of the DDT loss occurred by volatilisation, which increased fivefold when the temperature changed from 15 to 45 degrees C. Degradation of DDT to DDE was also faster at higher temperatures. Mineralisation of DDT, though minimal, increased with temperature and time. Higher temperatures also enhanced binding of DDT to soil. Flooding the treated soil further increased volatilisation and degradation, although mineralisation was greatly reduced. Exposure of flooded and unflooded soils treated with DDT to sunlight in quartz, glass and dark tubes for 42 days during summer resulted in significant volatile losses. Volatilisation in the quartz tubes was nearly twice as great as that in the dark tubes The volatilised organics from the quartz tubes contained larger amounts of p,p'-DDE than the glass and dark tubes. Higher rates of volatilisation and degradation were found in flooded soils. Also significant quantities of p,p'-DDD were detected in addition to DDE. The data clearly show that volatilisation is the major mechanism for the rapid dissipation of DDT from Indian soils.  相似文献   

10.
Enhanced microbial degradation of toxaphene by natural microorganisms occurred in soil and sediment amended with organic matter kept under anaerobic (flooded) conditions. Laboratory experiments yielded a dissipation half-life of approximately 3 and 1 week for soil and sediment, respectively, containing 10 ppm of technical toxaphene and a 1% alfalfa meal amendment. Dissipation was accompanied by an increase in early eluting gas chromatographic peaks and a decrease in later eluting peaks, indicating that dechlorination had occurred. Enhanced anaerobic dissipation also took place in soil containing 500 ppm of toxaphene, although at a lesser rate than at 10 ppm, and when cotton gin waste was used as amendment in place of alfalfa meal. Sediment in a toxaphene-contaminated pesticide waste disposal ditch was amended with 10% steer manure and flooded to ascertain field utility of the technique for on-site decontamination. Toxaphene residues were reduced from 63 to 23 ppm in 120 days, and some degradation activity still occurred up to 8 months after this single treatment.  相似文献   

11.
Rice is mostly cultivated on soil held under flooded conditions during the growing season, where the plow layer differentiates into a thin oxidized surface layer and an underlying reduced layer. Under these conditions, certain pesticides undergo reductive transformations which are characteristic to rice fields and other anaerobic systems. Thus, lindane and pentachlorophenol are reductively dechlorinated into less toxic products, whereas, in highly reduced soils, thiobencarb is dechlorinated into a substance phytotoxic to rice plants. Nitrophenyl compounds, such as parathion and chlornitrofen, are converted into respective amino analogs, which are apt to remain as soil-bound residues. Transformation processes of these and several other environmentally important pesticides used in rice fields in the past and/or at present are reviewed.  相似文献   

12.
Persistence of hexaconazole, a triazole fungicide in soils   总被引:1,自引:0,他引:1  
Persistence of hexaconazole (2-(2,4-dichlorophenyl)- 1-(1H-1,2,5-triazol-1-yl) hexan-2-ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27 degrees C than at 35 degrees C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro-organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

13.
A bacterial consortium with the ability to degrade methyl parathion and p-nitrophenol, using these compounds as the only carbon source, was obtained by selective enrichment in a medium with methyl parathion. Samples were taken from Moravia, Medellin; an area that is highly contaminated, owing to the fact that it was used as a garbage dump from 1974 to 1982. Acinetobacter sp, Pseudomonas putida, Bacillus sp, Pseudomonas aeruginosa Citrobacter freundii, Stenotrophomonas sp, Flavobacterium sp, Proteus vulgaris, Pseudomonas sp, Acinetobacter sp, Klebsiella sp and Proteus sp were the microorganisms identified within the consortium. In culture, the consortium was able to degrade 150 mg L?1 of methyl-parathion and p-nitrophenol in 120 h, but after adding glucose or peptone to the culture, the time of degradation decreased to 24 h. In soil, the consortium was also able to degrade 150 mg L?1 of methyl parathion in 120 h at different depths and also managed to decrease the toxicity.  相似文献   

14.
In this work we compared the effects of medium renewal and use of a carrier (ethanol) in the lethal toxicity of parathion to Daphnia magna Straus. Actual concentrations measured in test solutions with and without ethanol were not significantly different, indicating that there is no need for a carrier solution to assist dissolution of parathion, up to a concentration of 5 mg litre(-1). LC50 values at 48 h from bioassays with and without medium renewal were identical, indicating that in our experimental conditions, degradation of parathion was not a significant consideration. Similar 48-h LC50 values were obtained in all tests, with or without ethanol present. Thus, potential interactions between carrier and toxicant had no effect on the lethal toxicity of parathion to D. magna.  相似文献   

15.
This paper reports the effect of ultraviolet radiation on the degradation of pesticide ethyl parathion in the presence of humic acids. Ethyl parathion was completely degraded in 300 min using an artificial lamp of 7.41 x 10(-10) einstein/s. Humic acid from peat did not influence the photochemical rate (k = 8.92 x 10(-3) min). However, in the presence of aquatic humic acid, the photochemical rate was higher (11.5 x 10(-3) min). The analytical determinations show the presence of p-nitrophenol and aminophenol in the reaction medium during the photochemical experiments. The kinetic of degradation in all experiments obeyed a first-order reaction pattern.  相似文献   

16.
Ishii N  Uchida S 《Chemosphere》2005,60(2):157-163
We studied the characteristic gram-stain of Tc insolubilizing bacteria using various antibiotics, and the fate of insoluble Tc in a water column above flooded paddy soil to clarify Tc behavior in paddy fields. The formation of insoluble Tc in water column samples was inhibited by the addition of antibiotics, especially reagents against gram-negative bacteria. For a sample without antibiotics, insoluble Tc formation increased with time, and the maximum amount of insoluble Tc was observed on day 4 of incubation with (95m)Tc. In contrast, concentrations of ferrous ion decreased with time. These results suggested that gram-negative bacteria were mainly responsible for insoluble Tc formation, and that these bacteria were able to transform soluble Tc to insoluble forms under oxidizing conditions.  相似文献   

17.
Abstract

Laboratory studies were conducted to investigate some of the factors influencing pesticide degradation in‐ aqueous systems. Parathion added to natural water in ethanol, acetone or without organic solvent, was completely degraded within 2 wk. While most of the parathion was reduced to amino‐parathion when added in ethanol, no amino‐parathion was detected in the presence of acetone or when no solvent was added, suggesting that in the latter two cases the insecticide was aerobically degraded to other metabolites. No paraoxon was detected. When ethanol concentration was increased from 1% to 2 and 4%, the rate of parathion degradation was inversely related to the ethanol concentration. In the presence of glucose as a carbon source, approximately 50% of the parathion was reduced to aminoparathion. DDT degradation in natural water was more rapid when it was added in ethanol than when added in acetone. The only DDT metabolite detected was TDE, with about 36% conversion in presence of ethanol, and 20% when the DDT was added in acetone.  相似文献   

18.
Liang C  Bruell CJ  Marley MC  Sperry KL 《Chemosphere》2004,55(9):1213-1223
The objective of the laboratory study is to examine the conditions under which transition metal ions (e.g., ferrous ion, Fe2+) could activate the persulfate anion (S2O8(2)-) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a standard redox potential of 2.6 V. The SO4-* is capable of destroying groundwater contaminants in situ such as trichloroethylene (TCE). Experiments using Fe2+ as an activator under various molar ratios of S2O8(2)-/Fe2+/TCE in an aqueous system indicated that partial TCE degradation occurred almost instantaneously and then the reaction stalled. Either destruction of SO4-* in the presence of excess Fe2+ or the rapid conversion of all Fe2+ to Fe3+ limited the ultimate oxidizing capability of the system. Sequential addition of Fe2+ in small increments resulted in an increased TCE removal efficiency. Therefore, it appeared that Fe2+ played an important role in generating SO4-*. An observation of oxidation-reduction potential (ORP) variations revealed that the addition of sodium thiosulfate (Na2S2O3) to the ferrous ion activated persulfate system could significantly decrease the strong oxidizing conditions. It was hypothesized that the thiosulfate induced reducing conditions might convert Fe3+ to a lower valence state of Fe2+, making the Fe2+ available to activate persulfate decomposition. The sequential addition of thiosulfate (S2O3(2)-), after the initial stalling of ferrous ion activated persulfate oxidation of TCE, resulted in an improvement in TCE removal. The ferrous ion activated persulfate-thiosulfate redox couple resulted in fairly complete TCE degradation in aqueous systems in a short time frame. In soil slurry systems, TCE degradation was slower in comparison to aqueous systems.  相似文献   

19.
Fate of chlorophenoxyacetic acids in acid soil   总被引:1,自引:0,他引:1  
The relative persistence of MCPA, 2,4-D and 2,4,5-T in an acid soil was assessed under laboratory conditions with field capacity and flooded level of soil moisture. The experimental soil was incubated for 96 weeks and samples were collected at a specific interval for the determination of the residues by the gas chromatography. The decomposition was faster with MCPA than those of 2,4-D and 2,4,5-T. Soil moisture affected the degradation rate sharply.  相似文献   

20.
Abstract

Persistence of hexaconazole (2‐(2,4‐dichlorophenyl)‐l‐(lH‐l,2,5‐triazol‐l‐yl) hexan‐2‐ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27°C than at 35°C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro‐organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号