首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increases in anthropogenic nitrogen fixation have resulted in wide-scale enrichment of aquatic ecosystems. Existing biogeochemical theory suggests that N enrichment is associated with increasing concentrations of nitrate; however, dissolved organic nitrogen (DON) is often a major component of the total dissolved nitrogen (TDN) pool in streams and rivers, and its concentration can be significantly elevated in human-influenced basins. We examined N concentrations during summer base flow conditions in 324 Wisconsin streams to determine whether DON was a significant component of TDN and how its relative contribution changed across a gradient of increasing human (agriculture and urban) land use for 84 of these sites. Total dissolved nitrogen varied from 0.09 to 20.74 mg/L, and although DON was significantly higher in human-dominated basins relative to forested and mixed-cover basins, its concentration increased relatively slowly in response to increasing human land cover. This limited response reflected a replacement of wetland-derived DON in low-N streams by anthropogenic sources in human-dominated sites, such that net changes in DON were small across the land use gradient. Nitrate-N increased exponentially in response to greater human land cover, and NH4-N and NO2-N were present at low levels. Nitrite-N exceeded NH4-N at 20% of sites and reached a maximum concentration of 0.10 mg/L. This examination suggests that basic mechanisms driving N losses from old-growth forests subject to N saturation also shape the summertime N pool in Wisconsin streams, in addition to other processes dictated by landscape context. The overwhelming role of human land use in determining the relative and absolute composition of the summertime N pool included (1) rapid increases in NO3-N, (2) limited changes in DON, and (3) the unexpected occurrence of NO2-N. High (>3 mg/L) TDN conditions dominated by NO3-N, regardless of landscape context or forms of N inputs, indicate a state of "N hypersaturation", which appears to be increasingly common in human-influenced streams and rivers. Many sites in agriculturally rich areas had NO2-N and NO3-N concentrations that, if sustained, are at chronically toxic levels for sensitive aquatic biota, suggesting that N enrichment now has local consequences for resident stream biota in addition to contributing to coastal eutrophication.  相似文献   

2.
Schlesinger MD  Manley PN  Holyoak M 《Ecology》2008,89(8):2302-2314
Urbanization has profound influences on ecological communities, but our understanding of causal mechanisms is limited by a lack of attention to its component stressors. Published research suggests that at landscape scales, habitat loss and fragmentation are the major drivers of community change, whereas at local scales, human activity and vegetation management are the primary stressors. Little research has focused on whether urbanization stressors may supplant natural factors as dominant forces structuring communities. We used model selection to determine the relative importance of urban development, human activity, local and landscape vegetation, topography, and geographical location in explaining land bird species richness, abundance, and dominance. We analyzed the entire community and groups of species based on ecological characteristics, using data collected in remnant forests along a gradient of urban development in the Lake Tahoe basin, California and Nevada, USA. Urbanization stressors were consistently among the principal forces structuring the land bird community. Strikingly, disturbance from human activity was the most important factor for richness in many cases, surpassing even habitat loss from development. Landscape-scale factors were consistently more important than local-scale factors for abundance. In demonstrating considerable changes in land bird community structure, our results suggest that ecosystem function in urban areas may be severely compromised. Such changes compel local- and landscape-scale management, focused research, and long-term monitoring to retain biodiversity in urban areas to the extent possible.  相似文献   

3.
Abstract: Various factors influence animal movements in fragmented landscapes, and determining these factors is key to understanding ecological processes at a landscape scale. My goals were (1) to determine what factors influence movements of Keel-billed Toucans (    Ramphastos sulfuratus ) in a fragmented landscape in southern Mexico and (2) to use this information to predict how movement patterns might change if the landscape was altered. I developed a cost-distance geographic information system model that adjusts Euclidean distances by a cost of moving through a certain habitat type. Cost was based on habitat preferences exhibited by toucans. I then used this model to predict how movements might be affected by removal of isolated trees and living fences from the pasture matrix and by removal of forest remnants. Toucans moved more frequently between remnants separated by a low cost-distance value. There was a cost-distance threshold beyond which movements between remnants were rare. Below this threshold, fruit abundance influenced toucan movements but remnant area was not influential in that toucans did not preferentially move to large patches. Remnants close to various other remnants were more frequently visited by toucans, indicating that landscape connectivity influences toucan movements. Toucans incurred a 10–30% cost increase when moving in computer-simulated landscapes, indicating that changes in forest cover or configuration of habitats may negatively affect toucan populations, assuming that increased cost has a fitness consequence. Cost-distance modeling has been relatively unexplored and may be a valuable tool for determining how the configuration of a landscape impedes or facilitates animal movements.  相似文献   

4.
Past studies of local extinctions in fragmented habitats most often tested the influence of fragment size and isolation while ignoring how differences in the surrounding landscape matrix may govern extinction. We assessed how both the spatial attributes of remnant patches (area and isolation) and landscape factors (extent of urbanization and maximum inter-fire interval) influence the persistence of native plant species in grasslands in western Victoria, Australia. Persistence was determined in 2001 by resurveying 30 remnants first surveyed in the 1980s, and correlates of extinction were assessed using Bayesian logistic regression models. On average, 26% of populations of native species became locally extinct over two decades. Area and isolation had little effect on the probability of local extinction, but urbanization and longer maximum inter-fire intervals increased extinction risk. These findings suggest that the native grasslands studied are relatively insensitive to area- and isolation-based fragmentation effects and that short-term persistence of plant populations requires the maintenance of habitat quality. The latter is strongly influenced by the landscape matrix surrounding remnant patches through changes in fire regimes and increased exogenous disturbance.  相似文献   

5.
Disturbance and landscape dynamics in a changing world   总被引:9,自引:0,他引:9  
Turner MG 《Ecology》2010,91(10):2833-2849
Disturbance regimes are changing rapidly, and the consequences of such changes for ecosystems and linked social-ecological systems will be profound. This paper synthesizes current understanding of disturbance with an emphasis on fundamental contributions to contemporary landscape and ecosystem ecology, then identifies future research priorities. Studies of disturbance led to insights about heterogeneity, scale, and thresholds in space and time and catalyzed new paradigms in ecology. Because they create vegetation patterns, disturbances also establish spatial patterns of many ecosystem processes on the landscape. Drivers of global change will produce new spatial patterns, altered disturbance regimes, novel trajectories of change, and surprises. Future disturbances will continue to provide valuable opportunities for studying pattern-process interactions. Changing disturbance regimes will produce acute changes in ecosystems and ecosystem services over the short (years to decades) and long-term (centuries and beyond). Future research should address questions related to (1) disturbances as catalysts of rapid ecological change, (2) interactions among disturbances, (3) relationships between disturbance and society, especially the intersection of land use and disturbance, and (4) feedbacks from disturbance to other global drivers. Ecologists should make a renewed and concerted effort to understand and anticipate the causes and consequences of changing disturbance regimes.  相似文献   

6.
Abstract: The agricultural development of southern Australia over the past 200 years has resulted in extensively fragmented systems, often with only small, isolated remnants of native vegetation remaining. Grazing by sheep and cattle has affected both the remaining fragments and the surrounding matrix, and non-native plant and animal species have had dramatic effects on the native biota. Invasive plant species have the potential to significantly alter ecosystem composition and functioning, and invasive animals, particularly rabbits ( Oryctolagus cuniculatus ), foxes (    Vulpes vulpes ) and cats (    Felis catus ) effectively alter habitat and drive native fauna to local extinction. These different influences often interact. For instance, smaller fragments are often more prone to plant invasion and are more likely to have been grazed in the past. Invasion of plant species is often linked with livestock grazing or rabbit invasion, and other higher-order interactions are also apparent. Classical fragmentation studies that concentrate on parameters such as habitat area and isolation but ignore changes in habitat condition brought about by livestock and invasive species are unlikely to yield meaningful results. Similarly, management of fragmented ecosystems must account for not only the spatial characteristics of the remaining habitat but also the importance of other influences, particularly those that impinge on fragments from the surrounding matrix.  相似文献   

7.
Following habitat alteration or fragmentation, competition, parasitism, and predation from species that live in the new habitats may reduce the survival and reproductive success of species living in the original habitats. Negative influences from species that live outside the remnant patches are expected to be greater in small rather than in large remnant patches because more "external" species are expected to move through the centers of small remnant patches. We surveyed birds within remnant patches of old-growth montane forests on Vancouver Island, Canada, (1) to evaluate whether the richness and abundance of non-old-growth bird species were larger at the center of small rather than large patches and (2) to evaluate whether the opposite was true of old-growth bird species. More non-old-growth bird species were present at the center of small remnant patches of old growth than in large old-growth patches. We found no relationship, however, between patch size and richness or abundance of old-growth bird species at the center of remnant patches of old growth. This was true for old-growth species with open, cup-shaped nests and cavity nests. Old-growth birds may have been affected less in our study area than in other areas because they evolved within heterogeneous montane forests and interacted with non-old-growth species throughout their evolutionary histories or because the contrast between old-growth forests and logged areas was less than that between the forests and agricultural/urban areas that were surveyed in other studies.  相似文献   

8.
Most of the old-growth redwood ( Sequoia sempervirens ) in California has been cut; regenerating forests will probably never resemble those that were harvested, and what old growth remains on private land occurs in small, isolated remnant patches. The landscapes in which these stands occur differ so markedly from their original condition that their value as habitat to many species of wildlife, including bats, is unknown. Previous research in unfragmented redwood forests demonstrated that bats use basal hollows in old-growth redwoods as roosts. We sought to determine whether bats use similar old-growth trees as roosts when they occur in small, remnant patches of isolated old growth on commercial forest land. We compared bat occurrence in remnant and contiguous stands by collecting guano in traps suspended in hollows and by monitoring flight activity with ultrasonic bat detectors. Hollows in trees within the remnant stands had significantly more guano deposited per tree than the trees within the contiguous forest. The mean numbers of bat passes per night were statistically indistinguishable between the two treatments, although mean flight activity in the remnant stands was greater than in the contiguous forest. Bats frequently used basal hollows in small (<5 ha) stands of remnant old growth, which may be due to the closer proximity of remnants to stream courses, to their greater interface with edge where foraging success may be greater, or to the fact that the lower density of hollow-bearing trees in remnants than in contiguous forest favored greater use per tree. Significant use of small, residual old-growth redwood provides reason to maintain these remnants in managed landscapes as potentially important habitat for forest bats.  相似文献   

9.
Abstract:  Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However, even small habitat patches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of the focal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.  相似文献   

10.
The ecological and economic consequences of rain forest conversion and fragmentation for biodiversity, ecosystem functioning, and ecosystem services like protection of soils, water retention, pollination, or biocontrol are poorly understood. In human-dominated tropical landscapes, forest remnants may provide ecosystem services and act as a source for beneficial organisms immigrating into adjacent annual and perennial agro-ecosystems. In this study, we use empirical data on the negative effects of increasing forest distance on both pollinator diversity and fruit set of coffee to estimate future changes in pollination services for different land use scenarios in Sulawesi, Indonesia. Spatially explicit land use simulations demonstrate that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously and thus directly reduce coffee yields by up to 18%, and net revenues per hectare up to 14% within the next two decades (compared to average yields of the year 2001). Currently, forests in the study area annually provide pollination services worth 46 Euros per hectare. However, our simulations also revealed a potential win-win constellation, in which ecological and economic values can be preserved, if patches of forests (or other natural vegetation) are maintained in the agricultural landscape, which could be a viable near future option for local farmers and regional land use planners.  相似文献   

11.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   

12.
Using geographic information systems (GIS) and spatial analysis techniques, we developed a landscape design to maintain old-growth forest remnants and integrate commodity production in the surrounding second-growth matrix. The 4500-ha forest landscape in northern Wisconsin contains scattered patches of old-growth eastern hemlock ( Tsuga canadensis ) and northern hardwoods, predominately sugar maple ( Acer saccharum ). The design incorporates an old-growth restoration zone surrounding old-growth patches to buffer and enhance forest-interior habitat and link nearby old-growth remnants. This addition restores aspects of landscape patch size and structure and ecosystem juxtaposition that characterize a nearby, large, and contiguous natural old-growth landscape. A larger secondary zone is delineated for uneven-aged forest management. This zone provides a matrix structurally similar to the old-growth patches but also accommodates harvesting. A larger outer zone is retained primarily in even-aged forest of aspen ( Populus tremuloides ) and paper birch ( Betula papyrifera ), but traditional clearcutting practices are modified to partial cutting and mixed-species rotations. This design meets limited goals of biodiversity enhancement and integrated commodity production in a landscape that will remain largely harvested. The landscape design is therefore improved not only by buffers and corridors provided to old-growth ecosystems, but by modifying the management of the majority commodity lands matrix as well.  相似文献   

13.
With growing levels of urbanization and agriculture throughout the world, it is increasingly important that both research and management efforts take into account the effects of this widespread landscape alteration and its consequences for natural systems. Freshwater ecosystems, namely reservoirs, are particularly sensitive to land use changes. In this context, modelling can be very useful, for decision support, as an investigative tool to forecast the outcome of various scenarios, to guide current management in order to meet future targets and to develop integrated frameworks for management accordingly to the Water Framework Directive (WFD). The present paper examined the applicability of a holistic Stochastic-Dynamic Methodology (StDM), coupled with a Cellular Automata (CA) model, in capturing how expected changes at land use level will alter the ecological status of lentic ecosystems, namely at physicochemical and biological levels. The methodology was applied to Portuguese reservoirs located in the Douro's basin and illustrated with a series of stochastic-dynamic and spatial outputs taking into account expected scenarios regarding land use changes. Overall, the simulation results are encouraging since they seem to demonstrate the tool reliability in capturing the stochastic environmental dynamics of the selected metrics facing spatial explicit scenarios. The ultimate goal was to couple monitoring assessment and the described modelling techniques to ease management and decision making regarding the practical implementation of the WFD, both at the scale of the reservoir body and at the scale of the respective river watershed dynamics.  相似文献   

14.
Rapid urbanization and a building boom in Chinese cities, together with the increase in human disturbances in ecosystems, have resulted in a range of ecological and land-use problems. The formulation of policies relating to urban land use requires adequate understanding of the landscape dynamics. The objective of the study was to describe spatial patterns and dynamic changes of the regional landscape of Shenzhen in the past 20 years. Based on MSS & TM images from 1978, 1986, 1990, 1995 and 1999, a landscape classification map of Shenzhen was constructed. Three kinds of spatial pattern indices, including landscape diversity, spatial configuration and characteristics of patches, as well as a human disturbance index, were examined using models and GIS. In the past two decades, the regional landscape in Shenzhen has changed dramatically, from a typical agricultural landscape to a rapidly urbanizing landscape. The gradual reduction in the cultivated land area and the dramatic increase in the built-up areas illustrate this progress clearly. Indices for the landscape spatial pattern have changed substantially. Some of the changes, reflecting the reasonable control of urban planning on the regional landscape, are the consequence of careful planning, but many of them are the result of disordered human disturbances that have occurred during the rapid urbanization process. These findings are helpful to future landscape development and land-use planning.  相似文献   

15.
The landscape ecological risk (LER) in Xiamen City, China, from 1990 to 2030 was studied using an urban land use and land cover change (LUCC) model and LER analysis. The LUCC model was used to predict the LUCC of Xiamen from 2020 to 2030. We analyzed the characteristics of LUCC and landscape pattern changes and, finally, evaluated the effect of rapid LUCC on LER. Of the six landscape types investigated, built-up land and farmland demonstrated the most significant changes. The area of built-up land increased by 1.5 times in 2010 and is predicted to increase by 2.7 times in 2030 than that in 1990. The area of farmland increased from 34.5% in 1990 to 24.5% in 2010 and is predicted to decrease to 15.1% in 2030. The number of patches (NP) of built-up land decreased with increasing area, which promoted the dominance of built-up land over other landscape types. Five landscape types, those other than built-up land, increased in NP, landscape fragmentation, segmentation, and disturbance but decreased in dominance. The LER of Xiamen in 2010 was slightly lower than that in 1990. However, with the acceleration of urbanization, the LER in 2020 and 2030 will increase by 7.6% and 12.5% than that in 2010. The LER will significantly increase in areas such as the Huandong sea area, the second urban core of Xiamen, and northern Xiang'an. For the areas, some measures (e.g. optimum urban spatial growth patterns and control of coastal reclamation) must inevitably increase to reduce the LER posed by rapid urbanization.  相似文献   

16.
Agricultural environments are critical to the conservation of biota throughout the world. Efforts to identify key influences on the conservation status of fauna in such environments have taken complementary approaches. Many studies have focused on the role of remnant or seminatural vegetation and emphasized the influence on biota of spatial patterns in the landscape. Others have recognized that many species use diverse "countryside" elements within farmland, and emphasize the benefits of landscape heterogeneity for conservation. Here, we investigated the effect of independent measures of both the spatial pattern (extent and configuration) and heterogeneity of elements (i.e., land uses/vegetation types) on bird occurrence in farm-scale agricultural mosaics in southeastern Australia. Birds were sampled in all types of elements in 27 mosaics (each 1 x 1 km) selected to incorporate variation in cover of native vegetation and the number of different element types in the mosaic. We used an information-theoretic approach to identify the mosaic properties that most strongly influenced bird species richness. Subgroups of birds based on habitat requirements responded most strongly to the extent of preferred elements in mosaics. Woodland birds were richer in mosaics with higher cover of native vegetation while open-tolerant species responded to the extent of scattered trees. In contrast, for total species richness, mosaic heterogeneity (richness of element types) and landscape context (cover of native vegetation in surrounding area) had the greatest influence. These results showed that up to 76% of landscape-level variation in richness of bird groups is attributable to mosaic properties directly amenable to management by landowners. Key implications include (1) conservation goals for farm landscapes must be carefully defined because the richness of different faunal components is influenced by different mosaic properties; (2) the extent of native vegetation is a critical influence in agricultural environments because it drives the farm-scale richness of woodland birds and has a broader context effect on total bird richness in mosaics; (3) land-use practices that enhance the heterogeneity of farmland mosaics are beneficial for native birds; and (4) the cumulative effect of even small elements in farm mosaics contribute to the structural properties of entire landscapes.  相似文献   

17.
Three Faces of Ecosystem Management   总被引:4,自引:1,他引:3  
  相似文献   

18.
Although species commonly modify habitats and thereby influence ecosystem structure and function, the factors governing the ecological importance of these modifications are not well understood. Pacific salmon have repeatedly been shown to positively influence the abundance of benthic biota by annually transferring large quantities of nutrients from marine systems to the nutrient-poor freshwaters in which they spawn. Conversely, other studies have demonstrated that salmon can negatively influence the abundance of freshwater biota, an effect attributed to bioturbation during upstream migration and nest construction. The factors determining which of these contrasting ecological effects predominates are unknown, including how human activities, such as land use, influence ecological responses to salmon. We sampled a key basal food resource, sediment biofilm, in seven southeast Alaskan streams impacted to varying degrees by timber harvest. Biofilm abundance (measured as chlorophyll a and ash-free dry mass) was positively related to timber-harvest intensity prior to salmon arrival. However, during the salmon run, an inverse relationship emerged of more abundant biofilm in less-harvested watersheds. Among-stream variability in biofilm response to salmon was largely explained by sediment particle size, which was larger in less-harvested watersheds. Collectively, these results suggest that, by altering stream sediment size, timber harvest transformed the dominant effect of salmon from nutrient enrichment to physical disturbance, thus modifying nutrient linkages between marine and freshwater ecosystems.  相似文献   

19.
Changes in Wildlife Communities Near Edges   总被引:7,自引:0,他引:7  
Abstract: Wildlife managers and land managers have traditionally considered edges as beneficial to wildlife because species diversity generally increases near habitat edges. Explanations for this edge effect include greater vegetative complexity at edges or the simultaneous availability of more than one landscape element. However, edges can have negative consequences for wildlife by modifying distribution and dispersal and by increasing incidence of nest predation and parasitism Edges also may be detrimental to species requiring large undisturbed areas because increases in edge generally result in concommitant reductions in size and possible isolation of patches and corridots. Thus, both wildlife and land managers should be cautious when describing the benefits of edges to wildlife: particularly when dealing with species that require forest interiors.
Changes in wildlife communities associated with habitat edges are not easily assessed because defining edge species and measuring edge dimensions can be difficult in field studies Also, there is no general consensus as to how edge effect is best measured. Well-designed long-term studies of edges in various landscapes are needed (1) to better understand the positive and negative impacts of edges on wildlife communities, guilds, or key species, and (2) to effectively quantify edge effect and thereby develop management recommendations to improve the quality of edges for wildlife. Additional studies of edge effect are timely because greater amounts of edge will continue to be created in future landscapes due to extensive agriculture and other land-use-practices, and because developing knowledge in conservation biology and landscape ecology will facilitate multidisciplinary approaches to edge and landscape management for the benefit of wildlife.  相似文献   

20.
The aim of the study was to delineate soil landscape constraints to various land uses for urban and regional planning in the coastal areas of New South Wales (NSW), Australia. Soil landscape units mapped at 1:100,000 or coarser were sub-divided into component facets using advanced terrain modelling techniques in a geographic information system (GIS). The output facet grids were further overlain and linked with relevant GIS layers and soil databases to derive soil landscape constraint ratings for various land use purposes such as residential development, cropping and grazing. The constraint ratings for a specific land use were calculated based on objective and rule-based assessments of soil and landscape features such as engineering hazards, intrinsic fertility, drainage and other parameters. A series of soil landscape constraint maps which portray specific land use capability have been produced for the NSW coast. The methodology developed in this study has been demonstrated to be efficient in delineating soil landscape constraints and there is over 90% agreement between the model outputs and the assessment by soil surveyors with local knowledge. The output maps show levels of unprecedented detail of soil and landscape constraint for the coast of NSW and can be readily interpreted by land use planners and land managers for sustainable land use decision making practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号