首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Uptake, accumulation and translocation of caffeine by Scirpus validus grown in hydroponic condition were investigated. The plants were cultivated in Hoagland’s nutrient solution spiked with caffeine at concentrations of 0.5–2.0 mg L?1. The effect of photodegradation on caffeine elimination was determined in dark controls and proved to be negligible. Removal of caffeine in mesocosms without plants showed however that biodegradation could account for about 15–19% of the caffeine lost from solutions after 3 and 7 d. Plant uptake played a significant role in caffeine elimination. Caffeine was detected in both roots and shoots of S. validus. Root concentrations of caffeine were 0.1–6.1 μg g?1, while the concentrations for shoots were 6.4–13.7 μg g?1. A significant (p < 0.05) positive correlation between the concentration in the root and the initial concentrations in the nutrient solution was observed. The bioaccumulation factors (BAFs) of caffeine for roots ranged from 0.2 to 3.1, while BAFs for shoots ranged from 3.2 to 16.9. Translocation from roots to shoots was the major pathway of shoot accumulation. The fraction of caffeine in the roots as a percentage of the total caffeine mass in solution was limited to 0.2–4.4% throughout the whole experiment, while shoot uptake percentage ranged from 12% to 25% for caffeine at the initial concentration of 2.0 mg L?1 to 50–62% for caffeine at the initial concentration of 0.5 mg L?1. However, a marked decrease in the concentration of caffeine in the shoots between d-14 and d-21 suggests that caffeine may have been catabolized in the plant tissues subsequent to plant uptake and translocation.  相似文献   

2.
The aims of this study are to investigate whether and how the nitrogen form (nitrate (NO3 ) versus ammonium (NH4 +)) influences cadmium (Cd) uptake and translocation and subsequent Cd phytoextraction by the hyperaccumulator species Sedum plumbizincicola. Plants were grown hydroponically with N supplied as either NO3 or NH4 +. Short-term (36 h) Cd uptake and translocation were determined innovatively and quantitatively using a positron-emitting 107Cd tracer and positron-emitting tracer imaging system. The results show that the rates of Cd uptake by roots and transport to the shoots in the NO3 treatment were more rapid than in the NH4 + treatment. After uptake for 36 h, 5.6 (0.056 μM) and 29.0 % (0.290 μM) of total Cd in the solution was non-absorbable in the NO3 and NH4 + treatments, respectively. The local velocity of Cd transport was approximately 1.5-fold higher in roots (3.30 cm h?1) and 3.7-fold higher in shoots (10.10 cm h?1) of NO3 - than NH4 +-fed plants. Autoradiographic analysis of 109Cd reveals that NO3 nutrition enhanced Cd transportation from the main stem to branches and young leaves. Moreover, NO3 treatment increased Cd, Ca and K concentrations but inhibited Fe and P in the xylem sap. In a 21-day hydroponic culture, shoot biomass and Cd concentration were 1.51 and 2.63 times higher in NO3 - than in NH4 +-fed plants. We conclude that compared with NH4 +, NO3 promoted the major steps in the transport route followed by Cd from solution to shoots in S. plumbizincicola, namely its uptake by roots, xylem loading, root-to-shoot translocation in the xylem and uploading to the leaves. S. plumbizincicola prefers NO3 nutrition to NH4 + for Cd phytoextraction.  相似文献   

3.
Abstract

Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0–0.5 μg mL?1 of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 μg g?1 DW in shoots and from 163.1 to 574.7 μg g?1 DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.  相似文献   

4.
Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L?1) in nutrient solution. When doses were equal or higher than 8 mg Cu L?1, after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L?1 significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.  相似文献   

5.
Many polluted sites are typically characterized by contamination with multiple heavy metals, drought, salinity, and nutrient deficiencies. Here, an Australian native succulent halophytic plant species, Carpobrotus rossii (Haw.) Schwantes (Aizoaceae) was investigated to assess its tolerance and phytoextraction potential of Cd, Zn, and the combination of Cd and Zn, when plants were grown in soils spiked with various concentrations of Cd (20–320 mg kg?1 Cd), Zn (150–2,400 mg kg?1 Zn) or Cd + Zn (20?+?150, 40?+?300, 80?+?600 mg kg?1). The concentration of Cd in plant parts followed the order of roots > stems > leaves, resulting in Cd translocation factor (TF, concentration ratio of shoots to roots) less than one. In contrast, the concentration of Zn was in order of leaves > stems > roots, with a Zn TF greater than one. However, the amount of Cd and Zn were distributed more in leaves than in stems or roots, which was attributed to higher biomass of leaves than stems or roots. The critical value that causes 10 % shoot biomass reduction was 115 μg g?1 for Cd and 1,300 μg g?1 for Zn. The shoot Cd uptake per plant increased with increasing Cd addition while shoot Zn uptake peaked at 600 mg kg?1 Zn addition. The combined addition of Cd and Zn reduced biomass production more than Cd or Zn alone and significantly increased Cd concentration, but did not affect Zn concentration in plant parts. The results suggest that C. rossii is able to hyperaccumulate Cd and can be a promising candidate for phytoextraction of Cd from polluted soils.  相似文献   

6.
The plant–microorganism combinations may contribute to the success of phytoextraction of heavy metal-polluted soil. The purpose of this study was to investigate the effects of cadmium (Cd) soil concentration on selected physiological parameters of the poplar clone “I-214” inoculated at root level with a strain (BT4) of Pseudomonas fluorescens and a commercial product based on microbial consortia (Micosat F Fito®). Plants were subjected to Cd treatment of 40 mg kg?1 in greenhouse. The effects of plant–microbe interactions, plant growth, leaf physiology, and microbial activity were periodically monitored. Metal concentration and translocation factors in plant tissues proved enhanced Cd uptake in roots of plants inoculated with P. fluorescens and transfer to shoots in plants inoculated with Micosat F Fito®, suggesting a promising strategy for using microbes in support of Cd uptake. Plant–microbe integration increased total removal of Cd, without interfering with plant growth, while improving the photosynthetic capacity. Two major mechanisms of metal phytoextraction inducted by microbial inoculation may be suggested: improved Cd accumulation in roots inoculated with P. fluorescens, implying phytostabilization prospective and high Cd transfer to shoots of inoculated plants, outlining enhanced metal translocation.  相似文献   

7.
Commonly used in personal care products, triclocarban (TCC) and triclosan (TCS) are two chemicals with antimicrobial properties that have recently been recognized as environmental contaminants with the potential to adversely affect human health. The objective of the study described herein was to evaluate the potential of food crops to uptake TCC and TCS. Eleven food crops, grown in hydroponic nutrient media, were exposed to a mixture of 500 μg L?1 TCC and TCS. After 4 weeks of exposure, roots accumulated 86–1,350 mg kg?1 of antimicrobials and shoots had accumulated 0.33–5.35 mg kg?1 of antimicrobials. Translocation from roots to shoots was less than 1.9 % for TCC and 3.7 % for TCS, with the greatest translocation for TCC observed for pepper, celery, and asparagus and for TCS observed for cabbage, broccoli, and asparagus. For edible tuber- or bulb-producing crops, the concentrations of both TCC and TCS were lower in the tubers than in the roots. Exposure calculations using national consumption data indicated that the average exposure to TCC and TCS from eating contaminated crops was substantially less than the exposure expected to cause adverse effects, but exceeded the predicted exposure from drinking water. Exposure to antimicrobials through food crops would be substantially reduced through limiting consumption of beets and onions.  相似文献   

8.
Phthalic acid esters (PAEs) pollution in agricultural soils caused by widely employed plastic products is becoming more and more widespread in China. PAEs polluted soil can lead to phytotoxicity in higher plants and potential health risks to human being. We evaluated the individual toxicity of di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP), two representative PAEs, to sown rape (Brassica chinensis L.) seeds within 72 h (as germination stage) and seedlings after germination for 14 days by monitoring responses and trends of different biological parameters. No significant effects of six concentrations of PAE ranging from 0 (not treated/NT) to 500 mg?kg?1 on germination rate in soil were observed. However, root length, shoot length, and biomass (fresh weight) were inhibited by both pollutants (except root length and biomass under DEHP). Stimulatory effects of both target pollutants on malondialdehyde (MDA) content, superoxide dismutase (SODase) activity, ascorbate peroxidase (APXase) content, and polyphenoloxidase (PPOase) activity in shoots and roots (SODase activity in shoots excluded) were in the same trend with the promotion of proline (Pro) but differed with acetylcholinesterase activity (except in shoots under DnBP) for analyzed samples treated for 72 h and 14 days. Responses of representative storage compounds free amino acids (FAA) and total soluble sugar (TSS) under both PAEs were raised. Sensitivity of APXase and Pro in roots demonstrates their possibility in estimation of PAE phytotoxicity and the higher toxicity of DnBP, which has also been approved by the morphological photos of seedlings at day 14. Higher sensitivity of the roots was also observed. The recommended soil allowable concentration is 5 mg DnBP?kg?1 soil for the development of rape. We still need to know the phytotoxicity of DEHP at whole seedling stage for both the growing and development; on the other hand, soil criteria for PAE compounds are urgently required in China.  相似文献   

9.
Concentrations and profiles of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) were investigated in sediment and plants collected from a salt marsh in the Tejo estuary, Portugal. The highest PCDD/F and dl-PCB concentrations were detected in uncolonized sediments, averaging 325.25?±?57.55 pg g?1 dry weight (dw) and 8,146.33?±?2,142.14 pg g?1 dw, respectively. The plants Sarcocornia perennis and Halimione portulacoides growing in PCDD/F and dl-PCB contaminated sediments accumulated contaminants in roots, stems, and leaves. It was observed that PCDD/F and dl-PCB concentrations in roots were significantly lower in comparison with stems and leaves. In general, concentration of ΣPCDD/Fs and Σdl-PCBs in H. portulacoides tissues were found to be twofold higher than those in S. perennis, indicating a difference in the accumulation capability of both species. Furthermore, congener profiles changed between sediments and plant tissues, reflecting a selective accumulation of low chlorinated PCDD/Fs and non-ortho dl-PCBs in plants.  相似文献   

10.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   

11.
The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg?kg?1). In this study, the effect of compost at 20 t?ha?1 (C20) and at 60 t?ha?1 (C60), manure at 10 t?ha?1 (M10) and at 30 t?ha?1 (M30), and chemical fertilizers (NPK) on Zn fate in a soil–plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.  相似文献   

12.
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg?kg?1, the available Cd in the soil after the application of 1–10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg?kg?1, the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg?kg?1 fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg?kg?1), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.  相似文献   

13.
In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log10 g?1 fresh weight) when compared to shoots (5.77 log10 g?1 fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l?1 and 1,000 mg Zn l?1) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies.  相似文献   

14.
The implication of organic acids in Pb translocation was studied in two species varying in shoot lead accumulation, Sesuvium portulacastrum and Brassica juncea. Citric, fumaric, malic and α-cetoglutaric acids were separated and determined by HPLC technique in shoots, roots and xylem saps of the both species grown in nutrient solutions added with 200 and 400 μM of Pb(II). The lead content of the xylem saps was determined by ICP–MS. Results showed that S. portulacastrum is more tolerant to Pb than B. juncea. Lead concentration in xylem sap of the S. portulacastrum was significantly greater than in that of B. juncea. For both species, a positive correlation was established between lead and citrate concentrations in xylem sap. However minor relationship was observed for fumaric, malic and α-cetoglutaric acids. In the shoots lead treatment also induced a significant increase in citric acid concentration. Both observations suggest the implication of citric acid in lead translocation and shoot accumulation in S. portulacastrum and B. juncea. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could explain its high potential to translocate and accumulate this metal in shoot suggesting their possible use to remediate Pb polluted soils.  相似文献   

15.
This study aimed to assess the influence of excess iron on the capacity of accumulation of this heavy metal, mineral composition, and growth of Setaria parviflora and Paspalum urvillei. Seedlings were submitted to 0.009; 1; 2; 4; and 7 mM of Fe-EDTA. In both species there was an increase in the concentration of Fe, Zn, P, and Ca and a decrease in Mn, K, and Mg in the iron plaque. Both species accumulated more iron in roots. In the shoots, S. parviflora showed higher iron content, except at 7 mM. Iron altered the contents of Fe, Cu, K, and Mg in roots, and of Fe, Mn, Zn, N, P, K, Ca, and Mg in shoots. The two species tolerated high iron concentrations and accumulated high content of this element in both shoots and roots. The iron did not reduce their growth. Both species are indicated for studies aiming restoration of iron-contaminated areas.  相似文献   

16.
Salmonella serovars, one of the leading contributors to foodborne illness and are especially problematic for foods that are not cooked before consumption, such as fresh produce. The shipping containers that are used to transport and store fresh produce may play a role in cross contamination and subsequent illnesses. However, methods for quantitatively attached cells are somewhat variable. The overall goal of this study was to compare conventional plating with molecular methods for quantitating attached representative strains for Salmonella Typhimurium and Heidelberg on reusable plastic containers (RPC) coupons, respectively. We attached Salmonella enterica serovar Typhimurium ATCC 14028 and serovar Heidelberg SL486 (parent and an antibiotic resistant marker strain) to plastic coupons (2.54 cm2) derived from previously used shipping containers by growing for 72 h in tryptic soy broth. The impact of the concentration of sanitizer on log reductions between unsanitized and sanitized coupons was evaluated by exposing attached S. Typhimurium cells to 200 ppm and 200,000 ppm sodium hypochlorite (NaClO). Differences in sanitizer effectiveness between serovars were also evaluated with attached S. Typhimurium compared to attached S. Heidelberg populations after being exposed to 200 ppm peracetic acid (PAA). Treatment with NaClO caused an average of 2.73 ± 0.23 log CFU of S. Typhimurium per coupon removed with treatment at 200 ppm while 3.36 ± 0.54 log CFU were removed at 200,000 ppm. Treatment with PAA caused an average of 2.62 ± 0.15 log CFU removed for S. Typhimurium and 1.41 ± 0.17 log CFU for S. Heidelberg (parent) and 1.61 ± 0.08 log CFU (marker). Lastly, scanning electron microscopy (SEM) was used to visualize cell attachment and coupon surface topography. SEM images showed that remaining attached cell populations were visible even after sanitizer application. Conventional plating and qPCR yielded similar levels of enumerated bacterial populations indicating a high concordance between the two methods. Therefore, qPCR could be used for the rapid quantification of Salmonella attached on RPC.  相似文献   

17.
This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg?1 for As (with a mean of 25.39 mg kg?1 for tailings), 7.9 and 261.5 mg kg?1 (mean 189.83 mg kg?1 for tailings) for Co, 17.7 and 885.03 mg kg?1 (mean 472.77 mg kg?1 for tailings) for Cu, 12,500 and 400,000 mg kg?1 (mean 120,642.86 mg kg?1 for tailings) for Fe, and 28.1 and 278.1 mg kg?1 (mean 150.29 mg kg?1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.  相似文献   

18.
Studies related to phytoremediation by conifers are still at their beginning. Thus, we investigated the ability of a hybrid larch (Larix x eurolepis) to accumulate cadmium (Cd). One-month-old clonal plantlets grown in vitro were exposed for 1 week to a high Cd concentration (1.5 mM). No significant effect was observed on root and shoot biomass, root length, and needle number as a result of Cd treatment. Leaf photosynthetic pigment content and total soluble protein concentration in roots and shoots remained unchanged compared to control plantlets. Taken together, these results suggested that hybrid larch tolerated Cd in our conditions. The high Cd concentration in shoots (200 μg Cd gram?1 dry weight) showed the good capacity of larch to translocate Cd and thus a potential use of this species for phytoremediation. Furthermore, under our conditions, phytochelatin biosynthesis pathway was slightly stimulated, suggesting that this pathway did not reach the threshold and/or another mechanism of Cd storage may be involved to explain larch tolerance to Cd.  相似文献   

19.
Chronic exposure to arsenic (As) in rice has raised many health and environmental problems. As reported, great variation exists among different rice genotypes in As uptake, translocation, and accumulation. Under hydroponic culture, we find that the Chinese wild rice (Oryza rufipogon; acc. 104624) takes up the most arsenic among tested genotypes. Of the cultivated rice, the indica cv. 93-11 has the lowest arsenic translocation factor value but accumulates the maximum concentration of arsenic followed by Nipponbare, Minghui 86, and Zhonghua 11. Higher level of arsenite concentration (50 μM) can induce extensive photosynthesis and root growth inhibition, and cause severe oxidative stress. Interestingly, external silicate (Si) supplementation has significantly increased the net photosynthetic rate, and promoted root elongation, as well as strongly ameliorated the oxidative stress by increasing the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and peroxidase in roots and/or leaves of 93-11 seedlings. Notably, 1.873 mM concentration of Si considerably decreases the total As uptake and As content in roots, but significantly increases the As translocation from roots to shoots. In contrast, Si supplementation with 1.0 mM concentration significantly increases the total As uptake and As concentrations in roots and shoots of 93-11 seedlings after 50 μM arsenite treatment for 6 days.  相似文献   

20.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号