首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Hoch M  Weerasooriya R 《Chemosphere》2005,59(5):743-752
Tributyltin (TBT) is a common pollutant in natural environments and the interaction with mineral surfaces largely determine its solubility, speciation, bioavailability, and transport in aqueous systems. The present work aimed at quantifying the TBT adsorption using kaolinite and a kaolinite-rich sediment as sorbent materials. Experiments were conducted under conditions that are important from an environmental perspective. Proton adsorption data were determined for kaolinite as a function of pH and electrolyte concentrations to ascertain intrinsic acidity constants and site density values. The pH(zpc) of kaolinite sample KGa was determined at 4.9 by surface titration. The generalized diffused double layer model (DLM) was used to quantify both, proton and TBT adsorption. Following intrinsic acidity and TBT binding constants resulting from the TBT/kaolinite system were used: >SOH ==> >SO- + H+, logK = -5.4; >SOH + H+ ==> SOH2+, logK = 4.6; >XNa + H ==> XH + Na+, logK(X/H+) = -1.1; >SO- + TBT+ ==> >SOTBT, logK = 3.5; >XNa + TBT+ ==> Na+, logK(X/TBT) = 1.0. All surface-active variable charge sites on kaolinite, namely >AlOH and >SiOH are grouped and collectively refer to as >SOH in this paper. >XNa refers to ion exchange sites. Modeling of TBT adsorption onto kaolinite was conducted distinguishing selective (high affinity) sites (>S(S)OH) in addition to non-selective sites (>SOH). The inclusion of >S(S)OH was essential in order to quantify TBT adsorption successfully, while the inclusion of >XNa was optional. The reduction of surface coverage values by a 10-fold TBT adsorption modeling is in agreement with the results of molecular model calculations of the system. Parameters calculated for the monophase kaolinite were subsequently used to quantify the TBT adsorption onto kaolinite-rich sediment.  相似文献   

2.
Magnetic and non-magnetic fractions of coal fly ashes from SE US electric power plants were characterized with special emphasis on the potential environmental consequences of their terrestrial disposal. Quartz and mullite were the crystalline minerals dominating the non-magnetic fractions. Magnetic fractions contained magnetite, hematite, and, to a lesser extent, quartz and mullite. Chemical analyses revealed that magnetic fractions had about 10 times higher concentrations of Fe, and 2-4 times higher concentrations of Co, Ni, and Mn. Non-magnetic fractions were enriched in K, Al and Ca. Iron content within fly ash particles was negatively correlated with elements associated with aluminosilicate matrix (Si, Al, K, Na). Solubility of most elements was higher in the non-magnetic than in the magnetic fractions of alkaline fly ashes at comparable pH. Calcium was associated with the non-magnetic fraction of the alkaline fly ashes which resulted in a higher pH buffering capacity of this fraction.  相似文献   

3.
UraniumVI sorption behavior on silicate mineral mixtures   总被引:1,自引:0,他引:1  
UraniumVI sorption experiments involving quartz and clinoptilolite, important mineral phases at the proposed US nuclear waste repository at Yucca Mountain, NV, were conducted to evaluate the ability of surface complexation models to predict UVI sorption onto mineral mixtures based on parameters derived from single-mineral experiments. The experiments were conducted at an initial UVI aqueous concentration of approximately 2.0 x 10(-7) mol.l-1 (0.1 mol.l-1 NaNO3 matrix) and over the pH range approximately 2.5 to approximately 9.5. The UVI solutions were reacted with either quartz or clinoptilolite only, or with mixtures of the two minerals. The experiments were carried out under atmospheric pCO2(g) conditions (in loosely capped containers) or under limited pCO2(g) (in capped containers or in a glove box). Data from sorption experiments on quartz at atmospheric pCO2 conditions were used to derive UVI binding constants for a diffuse-layer surface complexation model (DLM). The DLM was then used with surface area as a scaling factor to predict sorption of UVI onto clinoptilolite and clinoptilolite/quartz mixtures under both atmospheric and low pCO2 conditions. The calculations reproduced many aspects of the pH-dependent sorption behavior. If this approach can be demonstrated for natural mineral assemblages, it may be useful as a relatively simple method for improving radionuclide transport models in performance-assessment calculations.  相似文献   

4.
Road dust contain potentially toxic pollutants originating from a range of anthropogenic sources common to urban land uses and soil inputs from surrounding areas. The research study analysed the mineralogy and morphology of dust samples from road surfaces from different land uses and background soil samples to characterise the relative source contributions to road dust. The road dust consist primarily of soil derived minerals (60%) with quartz averaging 40-50% and remainder being clay forming minerals of albite, microcline, chlorite and muscovite originating from surrounding soils. About 2% was organic matter primarily originating from plant matter. Potentially toxic pollutants represented about 30% of the build-up. These pollutants consist of brake and tire wear, combustion emissions and fly ash from asphalt. Heavy metals such as Zn, Cu, Pb, Ni, Cr and Cd primarily originate from vehicular traffic while Fe, Al and Mn primarily originate from surrounding soils. The research study confirmed the significant contribution of vehicular traffic to dust deposited on urban road surfaces.  相似文献   

5.
The sorption of U(VI) onto low-grade metamorphic rock phyllite was modeled with the diffuse double layer model (DDLM) using the primary mineralogical constituents of phyllite, i.e. quartz, chlorite, muscovite, and albite, as input components, and as additional component, the poorly ordered Fe oxide hydroxide mineral, ferrihydrite. Ferrihydrite forms during the batch sorption experiment as a weathering product of chlorite. In this process, Fe(II), leached from the chlorite, oxidizes to Fe(III), hydrolyses and precipitates as ferrihydrite. The formation of ferrihydrite during the batch sorption experiment was identified by M?ssbauer spectroscopy, showing a 2.8% increase of Fe(III) in the phyllite powder. The ferrihydrite was present as Fe nanoparticles or agglomerates with diameters ranging from 6 to 25 nm, with indications for even smaller particles. These Fe colloids were detected in centrifugation experiments of a ground phyllite suspension using various centrifugal forces. The basis for the successful interpretation of the experimental sorption data of uranyl(VI) on phyllite were: (1) the determination of surface complex formation constants of uranyl with quartz, chlorite, muscovite, albite, and ferrihydrite in individual batch sorption experiments, (2) the determination of surface acidity constants of quartz, chlorite, muscovite, and albite obtained from separate acid-base titration, (3) the determination of surface site densities of quartz, chlorite, muscovite, and albite evaluated independently of each other with adsorption isotherms, and (4) the quantification of the secondary phase ferrihydrite, which formed during the batch sorption experiments with phyllite. The surface complex formation constants and the protolysis constants were optimized by using the experimentally obtained data sets and the computer code FITEQL. Surface site densities were evaluated from adsorption isotherms at pH 6.5. The uranyl(VI) sorption onto phyllite was accurately modeled with these newly determined constants and parameters of the main mineralogical constituents of phyllite and the secondary mineralization phase ferrihydrite. The modeling indicated that uranyl sorption to ferrihydrite clearly dominates uranyl sorption, showing the great importance of secondary iron phases for sorption studies.  相似文献   

6.
7.
High molecular weight materials (HMWM, >12000-14000 Da) excreted by the two cyanophyte species (Microcystis aeruginosa and Anabaena spiroides) and a diatom (Aulacoseira granulata) which are dominant phytoplankton species in a eutrophic reservoir, Barra Bonita, Brazil were investigated as copper (Cu) and cadmium (Cd) complexation agents and their monosaccharide and elemental analysis of C, H, N and S determined. Also, HMWM obtained from the reservoir water as well as from a mixture of the three algae materials were studied. The HMWM of the cyanophytes and the mixture of the three algae materials complexed Cu and Cd, whereas the HMWM of the diatom and that from the reservoir water complexed only Cu. Two classes of ligands of intermediate to weak binding strength were obtained after Scatchard plot analysis of the titration data. The cyanophytes and the mixture HMWM presented higher conditional stability constants for Cu class-1 ligands (logK1' = 9.2-9.5) than the HMWM derived from the diatom and the reservoir water (logK1' = 8.6-8.8). Higher proportions of acidic monosaccharides corresponded to higher K1' of Cu and Cd complexation, yet no relation was observed among complexation parameters and elemental analysis. This study points out Cu ligands of intermediate to weak binding strength in the excreted HMWM of dominant microalgae and in the HMWM of the reservoir water, while Cd was solely complexed by ligands isolated from the cyanophyte HMWM.  相似文献   

8.
9.
10.
Zhao H  Guo R  Chen J  Liang X 《Chemosphere》2006,64(4):574-578
By a soil column liquid chromatograph (SCLC) method, the soil organic carbon content normalized adsorption coefficients (K(oc)) of six polybrominated biphenyls (PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153) are determined. Based on the similarity between the molecular structures of PBBs and PCBs, a simple linear predictive model has been developed with the correlation coefficient R=0.9812 and standard error SE=0.19. The logK(oc) values of any PBB congeners can be predicted by using the logK(oc) values of the corresponding PCBs according to this model. Using the published data for logK(oc) values of PCB congeners, logK(oc) values of all 209 PBB congeners have been for the first time predicted. Compared with the data obtained from the experiment, the results of prediction are very accurate.  相似文献   

11.
Bacteriophage removal by soil passage in two field studies was re-analyzed with the goal to investigate differences between one- and two-dimensional modeling approaches, differences between one- and two-site kinetic sorption models, and the role of heterogeneities in the soil properties. The first study involved removal of bacteriophages MS2 and PRDI by dune recharge, while the second study represented removal of MS2 by deep well injection. In both studies, removal was higher during the first meters of soil passage than thereafter. The software packages HYDRUS-ID and HYDRUS-2D, which simulate water flow and solute transport in one- and two-dimensional variably saturated porous media, respectively, were used. The two codes were modified by incorporating reversible adsorption to two types of kinetic sites. Tracer concentrations were used first to calibrate flow and transport parameters of both models before analyzing transport of bacteriophages. The one-dimensional one-site model did not fully describe the tails of the measured breakthrough curves of MS2 and PRD1 from the dune recharge study. While the one-dimensional one-site model predicted a sudden decrease in virus concentrations immediately after the peaks, measured data displayed much smoother decline and tailing. The one-dimensional two-site model simulated the overall behavior of the breakthrough curves very well. The two-dimensional one-site model predicted a more gradual decrease in virus concentrations after the peaks than the one-dimensional one-site model, but not as good as the one-dimensional two-site model. The dimensionality of the problem hence can partly explain the smooth decrease in concentration after peak breakthrough. The two-dimensional two-site model provided the best results. Values for k(att2) and k(det2) could not be determined at the last two of four monitoring wells, thus suggesting that either a second type of kinetic sites is present in the first few meters of dune passage and not beyond the second monitoring well, or that effects of soil heterogeneity and dimensionality of the problem overshadowed this process. Variations between single collector efficiencies were relatively small, whereas collision efficiencies varied greatly. This implies that the nonlinear removal of MS2 and PRD1 is mainly caused by variations in interactions between grain and virus surfaces rather than by physical heterogeneity of the porous medium. Similarly, a two-site model performed better than the one-site model in describing MS2 concentrations for the deep well injection study. However, the concentration data were too sparse in this study to have much confidence in the fitted parameters.  相似文献   

12.
13.
At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.  相似文献   

14.
As one of the widely used antibiotics in the world, the environmental risks of tylosin (TYL) received more and more attention. In order to assess its environmental fate and ecological effects accurately, it is necessary to understand the sorption properties of TYL on the soils/sediments. The sorption of TYL on goethite at different pH and ionic strength conditions were measured through a series of batch experiments and the sorption data of TYL were fitted by Freundlich and dual-mode sorption models. It was obvious that sorption was strongly dependent on pH and ionic strength. Sorption capacity of TYL increased as the pH increased and ionic strength decreased. The pH and ionic strength-dependent trends might be related with complexation between cationic/neutral TYL species and goethite. The sorption affinity of TYL on goethite decreased as ionic strength increased, which only occurred at higher TYL concentrations, suggested that inner complex might have dominated process at low concentrations and outer complex might occur at higher concentrations of TYL. Spectroscopic evidence indicated that tricarbonylamide and hydroxyl functional groups of TYL might be accounted for the sorption on mineral surfaces. The experimental data of TYL sorption could be fitted by surface complexation model (FITEQL), indicating that ≡FeOH with TYL interaction could be reasonably represented as a complex formation of a monoacid with discrete sites on goethite. The sorption mechanism of TYL might be related with surface complexation, electrostatic repulsion, and H-bounding on goethite. It should be noticed that the heterogeneous of sorption affinity of TYL on goethite at various environment to assess its environment risk.  相似文献   

15.
Oxidation of pyrite at the Nopal I uranium deposit, Peña Blanca district, Chihuahua, Mexico has resulted in the formation of Fe-oxides/hydroxides. Anomalous U concentrations (i.e. several hundred to several thousand ppm) measured in goethite, hematite, and amorphous Fe-oxyhydroxides in a major fracture that crosscuts the deposit and the absence of U minerals in the fracture suggest that U was retained during secondary mineral growth or sorbed on mineral surfaces. Mobilization and transport of U away from the deposit is suggested by decreasing U concentrations in fracture-infilling materials and in goethite and hematite with distance from the deposit. Greater than unity 234U/238U activity ratios measured in fracture-infilling materials indicate relatively recent ( < 1 Ma) U uptake from fluids that carried excess 234U. Systematic decreases in 234U/238U activity ratios of fracture materials with distance from the deposit suggest a multistage mobilization process, such as remobilization of U from 234U-enriched infill minerals or differential or diminished transport of U-bearing solutions containing excess 234U.  相似文献   

16.
Strategies for including vegetation compartments in multimedia models   总被引:6,自引:0,他引:6  
Cousins IT  Mackay D 《Chemosphere》2001,44(4):643-654
The incentives for including vegetation compartments in multimedia Level I, II and III fugacity calculations are discussed and equations and parameters for undertaking the calculations suggested. Model outputs with and without vegetation compartments are compared for 12 non-ionic organic chemicals with a wide variety of physical-chemical properties. Inclusion of vegetation compartments is shown to have a significant effect on two classes of chemicals: (1) those that are taken up by atmospheric deposition and (2) those that are taken up by transpiration through the plant roots. It is suggested that uptake from the atmosphere is important for chemicals with logK(OA) greater than 6 and a logK(AW) of greater than -6. Plant uptake by transpiration is important for chemicals with logK(OW) less than 2.5 and a logK(AW) of less than -1. At logK(OA) > 9 atmospheric uptake is dominated by particle-bound deposition and the importance of partitioning to vegetation is largely dependent on the relative magnitude of the particle deposition velocities to soil and vegetation. These property ranges can be used to determine if a chemical will significantly partition to vegetation. If the chemical falls outside the property ranges of the two classes it will probably be unnecessary to include vegetation in models for assessing environmental fate. The amount of chemical predicted to partition to vegetation compartments in the model is shown to be highly sensitive to certain model assumptions. Further experimental research is recommended to obtain more reliable equations describing equilibrium partitioning and uptake/depuration kinetics.  相似文献   

17.
A Biotic Ligand Model was developed predicting the effect of cobalt on root growth of barley (Hordeum vulgare) in nutrient solutions. The extent to which Ca(2+), Mg(2+), Na(+), K(+) ions and pH independently affect cobalt toxicity to barley was studied. With increasing activities of Mg(2+), and to a lesser extent also K(+), the 4-d EC50(Co2+) increased linearly, while Ca(2+), Na(+) and H(+) activities did not affect Co(2+) toxicity. Stability constants for the binding of Co(2+), Mg(2+) and K(+) to the biotic ligand were obtained: logK(CoBL)=5.14, logK(MgBL)=3.86 and logK(KBL)=2.50. Limited validation of the model with one standard artificial soil and one standard field soil showed that the 4-d EC50(Co2+) could only be predicted within a factor of four from the observed values, indicating further refinement of the BLM is needed.  相似文献   

18.
Partitioning/sorption of selected environmental pollutants (PCBs, organochlorine insecticides, triazine and amide herbicides) into dissolved humic acids (HA), soil and mineral substances was evaluated by measuring their free concentrations by solid-phase microextraction (SPME). Compounds were chosen to cover a wide range of logK(ow) (2.2-7.6). Two different types of partitioning behaviour for dissolved HA were observed. Compounds with logK(ow)>5 partitioned almost instantly into HA fraction and the remaining free fraction remained rather constant. LogK(HA) and logK(DOC) were calculated and found to be similar for commercial HA, HA standard and isolated HA. The behaviour of these compounds in soil suspension was similar, but strong sorption on CaCO3 and Florisil was also noticed. For compounds with logK(ow)<5, we have not noticed significant changes in free concentrations in HA solutions over time. In soil suspension, however, some sorption/partitioning was observed over time for some compounds, but it was matching the sorption on CaCO3 and Florisil.  相似文献   

19.
20.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号