首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial and plant ecology of a long-term TNT-contaminated site   总被引:1,自引:0,他引:1  
The contamination of the environment with explosive residues presents a serious ecological problem at sites across the world, with the highly toxic compound trinitrotoluene (TNT) the most widespread contaminant. This study examines the soil microbial community composition across a long-term TNT-contaminated site. It also investigates the extent of nitroaromatic contamination and its effect on vegetation. Concentrations of TNT and its metabolites varied across the site and this was observed to dramatically impact on the extent and diversity of the vegetation, with the most heavily contaminated area completely devoid of vegetation. Bryophytes were seen to be particularly sensitive to TNT contamination. The microbial population experienced both a reduction in culturable bacterial numbers and a shift in composition at the high concentrations of TNT. DGGE and community-level physiological profiling (CLPP) revealed a clear change in both the genetic and functional diversity of the soil when soil was contaminated with TNT.  相似文献   

2.
Large quantities of trinitrotoluene (TNT) have been associated with past and present military activities worldwide. Because this contaminant is highly toxic and strongly sorbs to soil particles, bacteria that are able to transform it have had very little success, if any. This study was conducted to evaluate the bioavailability of 14C-labeled TNT in soil for microbial mineralization. Sorption-desorption experiments indicated that a Kendaia loam soil effectively adsorbs this explosive compound, with approximately 30-45% of the added TNT remaining sorbed to the soil after a total of 10 washings. A bacterial consortium isolated from explosive-contaminated sites was prepared in liquid medium and then tested in a TNT-spiked Kendaia loam soil. The concentration of TNT in the soil that was inoculated with the bacterial consortium was reduced by more than 30% of the initial concentration compared to the soil that did not contain the bacterial consortium within a period of 20 weeks. Nearly half of the TNT was mineralized as determined by the percentage of 14CO2 produced. Only one member of the consortium (i.e., Enterobacter sp.) significantly mineralized 25% of TNT although the extent of mineralization was significantly enhanced to 35% in the presence of the other two members of the consortium. The data suggest that some of the strongly adsorbed TNT may be accessible for metabolism if conditions for the right combination of microorganisms with specialized capabilities are optimized. The remaining sorbed fraction of substrate is presumably sequestered and thus unavailable to the microorganisms.  相似文献   

3.
The relationship among sugar concentrations, microbial community and physical variables (precipitation and soil temperature) was investigated in a ryegrass soil from January 2004 to January 2005. Mono- and disaccharide sugars were extracted using a mixture of dichloromethane and methanol and analyzed as their TMS derivatives by GC-MS. Changes in microbial community were assessed using phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) analysis. The results of a one-year study showed that the seasonal variability of sugar contents found in the soil samples is mainly related to biomass or nutritional status of the fungal community. The increase in sucrose and fructose exudation by plant roots in the beginning of the growing season (early spring) may be responsible for the highest fungal biomass amount (PLFAs) observed in this study. Fungal storage lipid abundances (NLFAs) peaked in summer, during the same period that the highest concentrations of mannitol and trehalose were detected. This is consistent with these two sugars being stress-induced fungal metabolites, produced due to the low soil moisture observed during this season. In contrast, bacterial community growth seems to be more dependent on plant substrate than on physical variables, since the strongest decrease in bacterial biomass amounts (PLFAs) was found after cutting of the ryegrass field in early July.  相似文献   

4.
Muckian L  Grant R  Doyle E  Clipson N 《Chemosphere》2007,68(8):1535-1541
Bacterial community structure was examined in polycyclic aromatic hydrocarbon (PAH) contaminated soil taken from a timber treatment facility in southern Ireland. Profiles of soil bacterial communities were generated using a molecular fingerprinting technique, terminal restriction fragment length polymorphism (TRFLP), and results were interpreted using sophisticated multivariate statistical analysis. Findings suggested that there was a correlation between PAH structure and bacterial community composition. Initial characterisation of soil from the timber treatment facility indicated that PAH contamination was unevenly distributed across the site. Bacterial community composition was correlated with the type of PAH present, with microbial community structure associated with soil contaminated with two-ringed PAHs only being distinctly different to communities in soils contaminated with multi-component PAH mixtures. Typically the number of bacterial ribotypes detected in samples did not appear to be adversely affected by the level of contamination.  相似文献   

5.
Frische T  Höper H 《Chemosphere》2003,50(3):415-427
In situ bioremediation is increasingly being discussed as a useful strategy for cleaning up contaminated soils. Compared to established ex situ procedures, meaningful and reliable approaches for monitoring the remediation processes and their efficiency are of special importance. The subject of this study was the significance of two bioassays for monitoring purposes. The work was performed within the scope of a research project on the in situ bioremediation of topsoil contaminated with 2,4,6-trinitrotoluene (TNT). To evaluate changes within different experimental fields during a 17-month remediation period, the results of soil microbial assays and luminescent bacteria assays were compared with chemical monitoring data. The luminescent bacteria assays showed a significant reduction of the water-soluble soil toxicants in the treated fields. This bioassay proved to be a sensitive screening indicator of toxicity and may effectively aid the ecotoxicological interpretation of chemical monitoring data. Microbial biomass (C(mic)), the metabolic quotient (qCO2), and the ratio of microbial to organic carbon (C(mic)/C(org)) showed a highly significant correlation with total concentrations of TNT in the soil. But, in contrast to luminescent bacteria assays, this approach did not reveal any recovery of the soil at the end of the remediation period. There is clear evidence for persistent adverse effects of chronic TNT contamination on the site-specific microbial community and the local carbon cycle in the soil. The study clearly exhibits the differences between, as well as the complementary value of both bioassay approaches for monitoring short-term and long-term effects of soil contamination and the efficiency of remediation.  相似文献   

6.
Changes in aerobic bacteria and autotrophic nitrifier numbers, and in respiration and nitrification in two soils treated with cinosulfuron at 42 (field rate) and 4200 microg/kg were studied after 1 and 4 weeks of incubation under laboratory conditions. Only nitrification at 1 week was slightly inhibited by the cinosulfuron treatment, even at the field rate. In vitro toxicity tests carried out in agar media on representative aerobic bacteria, fungi and Azotobacter strains isolated from the two soils, as well as on nine collection soil bacteria, showed that only a very high cinosulfuron concentration (100 mg/l) can have negative effects on the growth of a limited number of soil heterotrophic microorganisms, under conditions similar to those of soil environment. The absence of three branched-chain amino acids increased bacterial sensitivity, thus showing the importance of the chemical conditions and suggesting acetolactate synthase enzyme blockage as the toxicity mechanism. It is concluded that cinosulfuron has a negative effect on only a few aspects of the microbial community in soil ecosystems, even at concentrations higher that those currently in use.  相似文献   

7.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

8.
Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30 days. Bioremediation treatments, nutrient amendment and addition of a hydrocarbon-degrading bacterium, were also tested to enhance PAH biodegradation. Results clearly show the important role of meiofauna as structuring factor for bacterial communities with significant changes observed in the molecular fingerprints. However, these structural changes were not concomitant with changes in biomass or function. PAH contamination had a severe impact on total meiofaunal abundance with a strong decrease of nematodes and the complete disappearance of polychaetes and copepods. In contrast, correspondence analysis, based on T-RFLP fingerprints, showed that contamination by PAH resulted in small shifts in microbial composition, with or without meiofauna, suggesting a relative tolerance of bacteria to the PAH cocktail. The PAH bioremediation treatments were highly efficient with more than 95% biodegradation. No significant difference was observed in presence or absence of meiofauna. Nutrient addition strongly enhanced bacterial and meiofaunal abundances as compared to control and contaminated microcosms, as well as inducing important changes in the bacterial community structure. Nutrients thus were the main structural factor in shaping bacterial community composition, while the role of meiofauna was less evident.  相似文献   

9.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher dissolution rates, higher mass transfer coefficients, and lower effluent concentrations. Effluent concentrations were below solubility limits for all components at superficial velocities of 10-50 cm day(-1). Under continuous flow at 50 cm day(-1), RDX dissolution rates from Comp B and C4 were 34.6 and 97.6 microg h(-1) cm(-2) (based on initial RDX surface area), respectively, significantly lower than previously reported dissolution rates. Cycling between flow and no-flow conditions had a small effect on the dissolution rates and effluent concentrations; however, TNT dissolution from Comp B was enhanced under intermittent-flow conditions. A model that includes advection, dispersion, and film transfer resistance was developed to estimate the steady-state effluent concentrations.  相似文献   

10.
CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.  相似文献   

11.
The impact of fungicides triadimefon and propiconazole on soil bacterial populations from a strawberry field was investigated. Two fungicides were applied to the soil at concentrations of 10 mg/kg or 100 mg/kg with soil water contents 20.2% (fresh soil water content) or 26.0% (field capacity). Changes in bacterial communities were assessed using DNA extraction, polymerase chain reaction (PCR) amplification of the 16S rDNA and denaturing gradient gel electrophoresis (DGGE). High performance liquid chromatography (HPLC) was utilized to detect the residue of fungicides in soils. The results showed that propiconazole was more persistent than triadimefon in soils, and the two soil water contents did not cause significant differences in dissipation rates between the two fungicides. A high concentration of propiconazole could inhibit the existence of soil microbes while one of triadimefon might induce the microbial population in the first stage. From unweighted pair-group method using arithmetic averages (UPGMA) dendrograms, the effect of triadimefon and propiconazole at the two applied concentrations on a soil bacterial community could be long term. After triadimefon was applied for 60 days and propiconazole for 75 days, the compositions of microbial communities were not recovered. From the viewpoint of environmental protection, it was of significant importance to pay more attention not only to the residues of pesticide but also to the change in soil microbial communities.  相似文献   

12.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

13.
The uptake of nitroaromatic compounds by plants from the soil was studied at an ammunition site. After the development of analytical methods for 2,4,6-trinitrotoluene, aminodinitrotoluenes and dinitrotoluenes in plant material, we could show that these substances accumulated in the roots of plants and are found to a lesser extent inleaves and stems. We observed only moderate differences between various plant species. It is likely that a metabolic transformation in plants leads to the formation of dinitrotoluenes which are considered to be potent carcinogens. Results from soils with a wide range of explosive concentrations show a good correlation between the plant and soil concentrations. The relative accumulation in plant material is higher at lower soil concentrations. At low soil concentrations of about 1 mg trinitrotoluene/kg soil, an accumulation factor of about 0.5 can be derived. These data are an important input for the risk assessment of ammunition sites.  相似文献   

14.
An optimized microwave assisted extraction method for determination of trinitrotoluene (TNT) and related compounds in soil is presented. The new enhanced method exhibits improved extraction recovery and precision as well as sample handling time. For the separation and detection gas chromatography coupled to a thermoionic probe was used achieving TNT and dinitrotoluene detection limits per injection at the femtogram level. The generated extraction recovery and precision data are given for spiked and certified soil. Determined TNT and related compounds residues in soil collected from different parts of the world are presented.  相似文献   

15.
The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring 14C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and 14C-compounds mineralizing activity). Mineralization of 14C-chlordecone was inferior below 1 % of initial 14C-activity. Less than 2 % of 14C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial 14C-activity). Only 23 % of the remaining 14C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of 14C-sodium acetate and 14C-2,4-d was insensitive to chlordecone exposure in silty loam soil. However, mineralization of 14C-sodium acetate was significantly reduced in soil microcosms of sandy loam soil exposed to chlordecone as compared to the control (D0). These data show that chlordecone exposure induced changes in microbial community taxonomic composition and function in one of the two soils, suggesting microbial toxicity of this organochlorine.  相似文献   

16.
2,4,6-Trinitrotoluene (TNT) is toxic to soil invertebrates, but little is known about its toxicokinetic behavior in soil. Tissue residue analysis was used to evaluate whether the presence of TNT and its reduced metabolites in soil invertebrates was due to uptake of these compounds from the soil into the organism, or due to microbial transformation of TNT associated with the organism followed by uptake. Adult white potworms (Enchytraeus albidus) were exposed to non-lethal concentrations of TNT in amended artificial soil for 21 d, or to TNT in solution for 20 h. Soil exposure studies confirmed earlier reports that TNT was transformed in enchytraeids in vivo to 2- and 4-aminodinitrotoluenes. However, enchytraeid exposure to TNT in solution led to the additional presence of 2,4-diaminonitrotoluene as well as 2- and 4- hydroxyamino-dinitrotoluenes and azoxy-compounds, suggesting that TNT can be metabolized in vivo in the absence of soil. Incubation of unexposed enchytraeid homogenates with TNT led to a protein-dependent appearance of these metabolites in vitro after > or =16 h incubation. Cellular fractionation studies indicated that most of this activity resided in the 8000 x g pellet, and was completely inhibited by broad-spectrum antibiotics. These studies demonstrate that enchytraeids can transform TNT in vivo and in vitro, at least in part, by bacteria associated with the host organism.  相似文献   

17.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

18.
To determine if trinitrotoluene (TNT) forms nonextractable residues in earthworms and to measure the relative degree of accumulation as compared to TNT and its deaminated metabolites, Eisenia fetida was exposed to 14C-TNT using dermal contact to filter paper or exposure to soil. Nonextractable residues made up 32-68% of total body burden depending on exposure media and depuration time. Parent TNT accounted for less than 3% of radioactivity, while ADNTs accounted for 7-38%. Elimination half-lives were 61-120 h for TNT, ADNTs, and DANTs, which was significantly lower than the half-lives found for nonextractable residues, 201-240 h. However, over 80% of the nonextractable residue was solubilized using weak acid (pH 2). Based on our findings that TNT accumulation occurs primarily as nonextractable residues, which have a longer half-life, and that nonextractable residues can be solubilized, we propose that nonextractable residues could be used as a selective biomarker for assessing TNT contamination.  相似文献   

19.
The effect of chemical contaminants on freshwater meiofaunal communities is poorly understood and meiofauna rarely form part of environmental impact assessments in fresh waters. The community composition and diversity of meiofauna in streams of southwest England (Cornwall) representing a gradient in trace metal contamination were investigated. Multivariate and univariate statistical techniques were used to correlate community composition, diversity and environmental variables. Meiofaunal communities were very different at sites with high compared with low metal concentrations. Copper, either singly, or in combination with other environmental variables (aluminium, zinc or dissolved organic carbon), was the most important correlate with community composition. Not all meiofaunal species were adversely affected by metals, however, and some taxa, most notably certain cyclopoid copepods, were abundant at high metal concentrations. Moreover, sites with high metal concentrations were not significantly less diverse than sites of low metal concentrations. These data suggest that metal contamination significantly alters the composition of stream meiofaunal assemblages and highlight the importance of including meiofauna in impact studies of fresh waters.  相似文献   

20.
Variations in concentrations of polycyclic aromatic hydrocarbons (PAHs) and microbial community indicators were investigated in representative highly contaminated and less contaminated surface sediment sites of Hamilton Harbour. Inputs of PAH to the upper 3cm of sediments up to four times the average upper sediment concentrations were observed. Associated PAH fingerprint profiles indicated that the source was consistent with the PAH source to the industrial region of the harbour. Increased PAH loadings were associated with decreased bacterial populations as indicated by phospholipid fatty acid (PLFA) concentrations. However, relatively minor impacts on overall community composition were indicated. Porewater methane concentrations and isotopic data indicated a difference in the occurrence of methane oxidation between the two sites. This study confirms temporally limited transport of contaminants from highly impacted regions as a vector for contaminants within the harbour and the impact on microbial carbon cycling and bed stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号