首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为研究厌氧释磷过程中的影响因素,以连续流A 2N双污泥中试污泥为样品,考察了碳源种类、碳源浓度、pH值以及温度对反硝化除磷污泥厌氧释磷的影响。结果表明:乙酸为碳源时释磷效果最佳,其次是葡萄糖,甲醇为碳源时释磷效果较差。MLSS为1 200 mg/L左右时,投加200 mg/L的COD即可保证充分释磷。pH值为6.3~8.8,对厌氧释磷效果影响不大,适当提高pH值有利于提高释磷速率。温度为20~30℃,释磷效果较好。另外,实验同时研究了反硝化除磷污泥分别利用不同电子受体(硝氮、氧气)的吸磷特性。以硝氮为电子受体的反硝化吸磷过程中,前15min的反硝化吸磷脱氮速率最高,吸磷速率与反硝化速率分别为11.5、10.4 mgN/gVSS·h;以氧气为电子受体的好氧吸磷过程中,前15 min的好氧吸磷速率最高,达到20.4 mgP/gVSS·h,大约为反硝化吸磷的2倍。  相似文献   

2.
低C/N条件下MUCT工艺的反硝化除磷特性   总被引:1,自引:0,他引:1  
尹军  王晓玲  吴相会  吴磊 《环境科学》2007,28(11):2478-2483
以C/N较低的污水为处理对象,重点研究和分析了MUCT工艺缺氧区的反硝化除磷特性.结果表明,①缺氧区1因为COD浓度相对较高,回流污泥中的硝酸盐氮优先被传统反硝化菌利用,不能作为DPB的电子受体,所以主要发生释磷反应;②缺氧区2内DPB利用厌氧段贮存大量PHB为碳源,以硝酸盐氮为电子受体进行吸磷,且吸磷量逐日提高,从最初的0 .93 mg/L增加至18 mg/L,缺氧吸磷率最终稳定在40%左右;③缺氧区3内,由于硝酸盐氮和COD浓度过低,进行无效释磷反应过程,释磷量在0 .27~3 mg/L之间;④系统对COD、TN、TP的去除率较高,出水TN和TP浓度分别在10 mg/L和0 .9 mg/L以下.  相似文献   

3.
利用静态试验研究了电子受体类型对反硝化吸磷的影响,并且对以硝酸盐作为电子受体的反硝化除磷工艺提出了建议。试验结果表明:电子受体初始浓度为10.58mg/L-22.33mg/L时,以硝酸盐作为电子受体时的反硝化速率要大于以亚硝酸盐作为电子受体的反硝化速率;以硝酸盐作为电子受体时的缺氧吸磷速率也大于以亚硝酸盐作为电子受体时的缺氧吸磷速率。以硝酸盐作为电子受体的反硝化除磷系统中,亚硝酸盐冲击负荷会对系统脱氮除磷效果产生严重的影响。  相似文献   

4.
控制BNR工艺好氧、反硝化除磷效果因素实验研究   总被引:3,自引:0,他引:3  
郝晓地  戴吉  兰荔  张璐平 《环境科学学报》2008,28(11):2186-2191
以实验室动态生物营养物去除(BNR)工艺(BCFS)运行实验为基础,采用静态实验,研究了厌氧初始COD、碳源种类和反应时间对好氧吸磷和反硝化除磷效果的影响,同时将二者进行对比.实验结果表明,好氧吸磷效果随厌氧初始COD升高而增加.厌氧初始COD相同时,以葡萄糖为碳源的实验吸磷速率最快,4 h好氧反应后残余PO34-浓度最低;但以乙酸和丙酸为碳源的实验表现出更强的超量吸磷能力.缺氧条件下,常规反硝化细菌(OHO)引起的常规反硝化限制了本来就速率较低的反硝化除磷过程.当厌氧初始COD为400 mg·L-1时,以葡萄糖、乙酸和丙酸为碳源的实验中反硝化除磷占总除磷量的比例分别为46.12%、32.03%和21.96%.  相似文献   

5.
不同电子受体对反硝化除磷菌缺氧吸磷的影响   总被引:11,自引:4,他引:7  
利用厌氧/缺氧/好氧交替运行模式培养和富集反硝化除磷污泥,通过在缺氧段分别投加不同浓度的硝酸盐和亚硝酸盐,进行了反硝化除磷菌(DPB)在不同电子受体条件下的缺氧吸磷试验.结果表明,在保证有足够的硝酸盐电子受体的情况下,DPB的缺氧吸磷速率几乎不受硝酸盐浓度的影响,在试验条件下,缺氧阶段每消耗1 mg NO-3-N吸收约1 mg PO3--P;在一定浓度条件下,亚硝酸盐能够作为电子受体参与DPB反硝化吸磷,DPB在较低亚硝酸盐浓度(NO-2-N在5~20 mg/L范围)下的缺氧吸磷速率高于以硝酸盐为电子受体时的缺氧吸磷速率,并且缺氧吸磷速率在这个范围内随NO-2-N浓度的升高而降低;亚硝酸盐对DPB缺氧吸磷的抑制程度随其浓度的增加而增强,当NO-2-N≥35 mg/L时,DPB的缺氧吸磷反应几乎完全停止.  相似文献   

6.
FNA对好氧吸磷的长期抑制及污泥吸磷方式转化   总被引:2,自引:2,他引:0  
马娟  李璐  俞小军  孙雷军  孙洪伟  陈永志 《环境科学》2015,36(10):3786-3793
本研究采用交替厌氧/好氧(An/O)SBR反应器,在21~23℃的条件下启动系统并长期投加亚硝酸盐,考察游离亚硝酸(FNA)对系统好氧吸磷性能的长期抑制作用及驯化后污泥吸磷方式的转化.结果表明,投加FNA后,污泥的释磷和吸磷能力不仅未受到抑制,比释磷速率和比吸磷速率反而高于投加前.FNA浓度(以HNO2-N计)低于0.53×10-3mg·L-1时,系统除磷率均大于96.9%;当FNA浓度提高至0.99×10-3、1.46×10-3、1.94×10-3mg·L-1时,系统除磷率均会大幅下降,分别经过50、12、30 d的运行,除磷率恢复至64.42%、67.33%、44.14%,说明抑制作用导致的除磷性能恶化可以恢复且长期驯化作用能缩短恢复过程.值得注意的是,在低于1.46×10-3mg·L-1范围内,随着FNA投加量的提高,好氧段亚硝酸盐的损失量不断增大.研究还发现,经FNA长期抑制的好氧除磷系统内污泥吸磷方式发生转变,硝酸盐型和亚硝酸盐型缺氧吸磷能力分别为驯化前的3.35倍和3.86倍,说明长期投加FNA有利于富集以NO-2为电子受体的反硝化聚磷菌;而且,长期驯化有利于系统内污泥的沉降.  相似文献   

7.
反硝化除磷污泥的缺氧吸磷性能研究   总被引:2,自引:0,他引:2  
为探讨反硝化除磷过程中污泥的缺氧吸磷性能,利用厌氧/缺氧强化驯化得到的反硝化除磷污泥,通过间歇性试验考察不同电子受体类型、不同污泥浓度(MLSS)对吸磷过程的影响。试验结果表明,缺氧条件下反硝化除磷菌(DPB)利用硝酸盐作为电子受体能够彻底吸磷,其吸磷速率约为好氧吸磷的59%;若以亚硝酸盐为电子受体,浓度较低时(10.6 mg/L)的吸磷速率与硝酸盐为电子受体时相当,但较高的亚硝酸盐浓度(22.6 mg/L)会抑制反硝化除磷过程;适当提高污泥浓度能加快缺氧吸磷速度,而过高的污泥浓度会降低污泥对氮、磷的比去除速率,故应将MLSS控制在合理的范围内。  相似文献   

8.
厌氧-好氧-缺氧短程硝化同步反硝化除磷工艺研究   总被引:4,自引:0,他引:4  
构建了主要由厌氧-好氧-缺氧构成的短程硝化同步反硝化除磷工艺,并在常温条件下用于生活污水的处理.研究发现,通过调节反应器内好氧区的pH(8.2~8.7)和溶解氧(DO为3~5mg·L-1)能实现该工艺的快速启动,在好氧区内实现亚硝酸盐的累积.在稳定运行期内,DO是影响短程硝化的主要影响因素,好氧1区DO控制在1.5~2.0mg·L-1,好氧2区DO控制在0.5~1.0mg·L-1,好氧区内亚硝酸盐氮累积浓度稳定在5~10mg·L-1,氨氮去除率达到90%以上.各反应单元内碳源、硝酸盐和亚硝酸盐对除磷贡献的研究表明,该工艺的缺氧段实现了在不外加碳源的情况下以亚硝酸盐和硝酸盐共同作为电子受体的反硝化除磷,反硝化除磷量占系统总除磷量的80%以上.  相似文献   

9.
反硝化除磷机理及电子受体研究进展   总被引:1,自引:0,他引:1  
介绍了生物除磷的Comeau-Wentzel模式,这种模式在某种程度上能够解释生物除磷的机理,因此PAOs释磷和吸磷的Comeau-Wentzel模式被借鉴用以分析反硝化除磷的机理。在此基础上,总结近年来反硝化除磷的研究成果,阐述电子受体NOx-对反硝化除磷的影响:在厌氧区,只有当NO3-浓度较高时,厌氧释磷的效果才会受到影响;在缺氧区,硝酸盐能够做为反硝化除磷的电子受体,但硝酸盐浓度过高会明显降低磷去除速率;亚硝酸盐同样能够作为反硝化除磷的电子受体,前提是亚硝酸盐不超过临界抑制浓度。  相似文献   

10.
亚硝酸盐积累对A~2O工艺生物除磷的影响   总被引:1,自引:1,他引:0  
曾薇  李磊  杨莹莹  张悦  彭永臻 《环境科学》2010,31(9):2105-2112
常温条件下,通过控制好氧区DO浓度为0.3~0.5 mg/L,同时增大系统内回流比以降低系统好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2O工艺中成功启动并维持了短程硝化反硝化.但随着系统出水亚硝酸盐含量的升高,系统对磷的去除效果逐渐恶化.当好氧区亚硝酸盐浓度19 mg/L时,系统出水磷浓度大于进水磷浓度,系统处于净释磷状态.通过对原水COD浓度、反应区温度、pH值、游离亚硝酸浓度(free nitrous acid,FNA)等分析,表明碳源不足及短程硝化引起的亚硝酸盐积累影响了聚磷菌厌氧释磷和好氧吸磷;尤其是好氧区较高的FNA浓度(HNO2-N 0.002~0.003 mg/L)对聚磷菌好氧吸磷的抑制是导致系统除磷效果恶化的直接原因.通过外投碳源提高原水COD浓度,提高了聚磷菌厌氧释磷合成PHA的能力;同时增强了系统的反硝化能力,降低好氧区亚硝酸盐浓度,从而降低FNA对聚磷菌好氧吸磷的抑制程度,系统的除磷性能可迅速恢复;系统对磷的去除率可达96%以上.  相似文献   

11.
剩余污泥中磷的回收利用   总被引:1,自引:0,他引:1  
基于我国磷资源的短缺和城市污泥处理处置的现状,针对磷元素的流动特性,分析了城市污泥中磷回收的必要性。探讨了污泥中磷由固相释放至液相的厌氧消化法、臭氧氧化法、热处理法、超声波溶胞法和焚烧溶出法等方法,并对回收污泥中磷的化学沉淀法、吸附解析法、焚烧热处理法、纳滤法等的原理和研究现状进行了综述,对城市污泥中磷释放与回收技术的研究、开发与应用前景进行了展望,为城市污泥中磷的资源化回收利用提供指导。  相似文献   

12.
废水除磷技术及进展分析   总被引:15,自引:1,他引:15  
介绍了磷污染的危害,指出磷是产生水体富营养化的最主要因素.全面阐述废水除磷的技术,分析了各种工艺的特点,指出了生物除磷技术的发展趋势.  相似文献   

13.
城市污泥中磷的释放与回收   总被引:4,自引:1,他引:3  
基于我国磷资源和城市污泥的现状,针对城市污泥中的营养元素,分析了城市污泥中磷回收的必要性;探讨了城市污泥中磷由固相释放至液相的微生物消化法、热处理法和药剂溶出法等;综述了回收液相中磷的磷酸铵镁、磷酸镁钾、磷酸钠钾镁结晶法和磷酸钙盐沉淀法的原理和研究现状;展望了城市污泥中磷释放与回收技术的研究、开发与应用前景。  相似文献   

14.
为了探究侧流化学磷回收后生物污泥返送对主流系统的影响,连续85d对A2/O系统厌氧池混合液中的磷进行侧流化学回收,并将侧流生物污泥回流到缺氧池,考察了系统整体的磷、氮、有机物的去除,及生物除磷途径与污泥性能的变化.结果表明,刚开始系统除磷效果有所提高,出水PO43-浓度为(0.07±0.04) mg/L;20d后污泥沉降性能开始变差,除磷性能恶化,但对氮和有机物去除一直无显著影响;厌氧释磷速率和好氧吸磷速率下降,但缺氧吸磷速率却增加,缺氧反硝化聚磷和好氧聚磷的除磷比例由43.20%上升为53.38%,反硝化聚磷除磷得到了加强;污泥微生物胞内PHA和糖原的代谢模式无变化,但厌氧段合成的PHA量逐步下降;侧流磷最大回收量占进水磷量的24.75%,能够实现可观的磷回收效果;系统发生崩溃后,停止侧流化学磷回收,系统各功能就会逐渐得到恢复,可实现系统连续运行.  相似文献   

15.
为阐明沉积物磷赋存形态的空间分布特征及潜在释放风险,提供更准确合适的风险评估指标, 分析了沱江干流及其支流12个样点表层沉积物的磷赋存形态,测定了水溶性磷(WSP)及磷平衡浓度(EPC0),计算沉积物磷吸附指数(PSI)、磷吸附饱和度(DPS)及其衍生的磷释放风险指数(ERI).结果表明,沉积物5种形态磷含量顺序为:铁/铝结合磷(CDB-P,60.63%)>钙磷(Ca-P,30.84%)>有机磷(OP,3.92%)>亚铁磷(Fe(Ⅱ)-P,3.48%)>松散态磷(Loosely-P,1.13%).CDB-P是沉积物磷的主要存在形态(0.468~2.287mg/g),由上游至下游逐渐降低,这主要与上游工业污染有关.DPS、EPC0和PSI在空间分布上均呈现由上游至下游逐渐增大的趋势,变化范围分别为44.28%~80.39%、0.012~0.084mg/L和0.153~1.526L/g;上游大部分采样点ERI均超过了25%;各指标综合表明:上游存在较高的磷释放风险.回归分析与相关性表明,EPC0与上覆水磷、CDB-P、OP、有机质(OM)以及粒径均呈极显著相关性,且相关性远高于其他指标(ERI,DPS,PSI,WSP).因此,EPC0是评估沱江流域沉积物磷释放风险潜力更准确高效的指标,Fe/Al含量、粒径的增加以及有机质的减少会增加磷释放风险,因此应控制工业污染以及农业面源污染的输入.  相似文献   

16.
采用生产废水和模拟废水为处理对象,系统探讨了石灰法处理磷化废水的反应时间、投药量、搅拌强度和沉淀时间等因素对废水处理的影响。试验结果表明,混凝反应时间达到2h,石灰投加量理论用量的2.5倍才可使废水中的磷、钙充分反应生存羟基磷酸钙,从而使含磷废水出水达标。搅拌强度和沉淀时间对除磷效果影响不大。  相似文献   

17.
以商业化的锁磷材料—镧改性膨润土(Phoslock®)为对象,研究了Phoslock®对磷的吸附动力学和等温线,同时研究了材料对上覆水体以及底泥内源磷释放的控制效果.结果表明,Phoslock®对磷的吸附可以用Langmuir模型拟合,相关性达到0.96,模型计算磷的最大吸附量为10.4mgP/g,且磷吸附符合拟一级和拟二级动力学模型.室内模拟培养结果表明,当锁磷剂投加剂量为1553g/m2时,70d(好氧17d和厌氧53d)内,对上覆水中的磷酸盐去除率达到90%以上,沉积物内源磷释放削减83.1%,但会引起上覆水体中总氮、氨氮以及硝氮的增加,磷形态分析结果表明,表层(0~2cm)底泥中有超过50%的Mobile-P和Al-P转化为稳定态的Ca-P和Res-P,且控磷效果随着投加量的增加而增加.研究表明,Phoslock®对底泥内源磷具有较好的控制效果,但长期效果需加强研究.  相似文献   

18.
倒置AAO工艺聚磷微生物的吸磷行为   总被引:7,自引:1,他引:6       下载免费PDF全文
采用人工配水和市政污水研究了“缺氧-厌氧-好氧”(倒置AAO)脱氮除磷工艺中,聚磷微生物(PAOs)在低碳源、高硝酸盐环境下的释磷和吸磷行为.结果表明,在低碳源、高氮和磷环境中,尽管PAOs在缺氧厌氧段释磷程度低,如果适当延长厌氧段和好氧段的HRT、且好氧曝气较充分,仍能超量吸收磷.PAOs过量吸磷的能量来源不仅仅是厌氧段吸收与合成的胞内聚合物在好氧段的氧化,还来自好氧环境正常代谢过程中多余的能量.外加碳源的投加时间点对PAOs吸磷的影响不显著.PAOs在厌氧段后期出现过量吸磷现象,推测是细胞内有机物厌氧降解产生的ATP通过某种代谢途径被用于无机磷的吸收.  相似文献   

19.
A~2O-MBR工艺的脱氮除磷特性研究   总被引:1,自引:0,他引:1  
将传统的脱氮除磷工艺(厌氧/缺氧/好氧,A2O)与膜分离技术相结合,构建具有强化脱氮除磷作用的A2O-MBR工艺。以某城市污水处理厂的A2O-MBR工程为研究对象,通过长期的跟踪监测和实验研究,结果表明,该工艺具有非常好的脱氮除磷效果,出水总氮、氨氮及总磷的平均浓度分别为5.69 mg/L、1.32 mg/L和0.18 mg/L,去除率分别达到85%、94%和97%,优于《城镇污水处理厂污染物排放标准》中的一级A标准。另外,硝化速率随温度的降低而降低。释磷/吸磷效果较好,趋势明显。  相似文献   

20.
强化生物除磷体系中反硝化聚磷菌的选择与富集   总被引:40,自引:0,他引:40  
采用SBR反应器 ,对以硝酸盐作为电子受体的反硝化聚磷菌的选择和富集作了研究 .结果表明 ,反硝化聚磷菌存在于传统的强化生物除磷体系之中 .经过 3个阶段的选择和富集 ,反硝化聚磷菌在聚磷菌中的比例从 15 %上升到 73% .稳定运行的强化反硝化生物除磷体系具有良好的强化生物除磷和反硝化脱氮性能 ,缺氧结束时体系中磷浓度小于 1mg L ,除磷和脱氮效率分别大于 94 %和 95 % .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号