首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

2.
In Finland the percentage of biomass fuels of total primary energy supply is relatively high, close to 17%. The share of biomass in the total electricity generation is as much as 10%. This high share in Finland is mainly due to the cogeneration of electricity and heat within forest industry using biomass-based by-products and wastes as fuels. Forest industry is also a large user of fossil-based energy. About 28% of total primary energy consumption in Finland takes place in forest industry, causing about 16% of the total fossil carbon dioxide emissions.The Kyoto protocol limits the fossil CO2 and other greenhouse gas emissions and provides some incentives to the Finnish forest sector. There are trade-offs among the raw-material, energy and carbon sink uses of the forests. Fossil emissions can be reduced e.g. by using more wood and producing chemical pulp instead of mechanical one. According to the calculation rules of the Kyoto protocol Finnish forests in 2008–2012 are estimated to form a carbon source of 0.36 Tg C a−1 due to land use changes. Factually the forest biomass will still be a net carbon sink between 3.5 and 8.8 Tg C a−1. Because the carbon sinks of existing forests are not counted in the protocol, there is an incentive to increase wood use in those and to decrease the real net carbon sink. Also the criteria for sustainable forestry could still simultaneously be met.  相似文献   

3.
Of the greenhouse gas (GHG) mitigation options available from U.S. forests and agricultural lands, forest management presents amongst the lowest cost and highest volume opportunities. A number of carbon (C) accounting schemes or protocols have recently emerged to track the mitigation achieved by individual forest management projects. Using 50-year C cycling data from the Calhoun Experimental Forest in South Carolina, USA, C storage is estimated for a hypothetical forest management C offset project operating under seven of these protocols. After 100 years of project implementation, net C sequestration among the seven protocols varies by nearly a full order of magnitude. This variation stems from differences in how individual C pools, baseline, leakage, certainty, and buffers are addressed under each protocol. This in turn translates to a wide variation in the C price required to match the net present value of the non-project, business-as-usual alternative. Collectively, these findings suggest that protocol-specific restrictions or requirements are likely to discount the amount of C that can be claimed in “real world” projects, potentially leading to higher project costs than estimated in previous aggregate national analyses.  相似文献   

4.
中国四大林区固碳效率:测算、驱动因素及收敛性   总被引:2,自引:0,他引:2  
论文将林业碳汇纳入到林业经济核算体系之中,构建含有正外部性产出的DEAMalmquist效率分析模型,在系统测算林业固碳量的基础上,对1988—2013年中国四大林区的林业固碳效率变动及驱动因素进行了分析,并进一步对其效率收敛性进行了检验。研究结果表明:1)全国四大林区间的固碳量及固碳价值差异较大,固碳总价值从高到低依次为西南(1 870.69×108元)、东北(1 335.41×108元)、南方(842.73×108元)、北方林区(407.35×108元)。2)1988—2013年不含碳汇产出的林业生产Malmquist指数较低,为0.958;而把碳汇纳入林业产出进行考量,全国林业Malmquist指数整体有所提升,主要源于技术效率推动,年均增长速度为0.6%;其中南方、东北林区固碳效率处于提升状态,而西南林区和北方林区呈下降趋势。3)西南和南方林区固碳效率随时间变动呈现倒"U"型态势;四大林区中南方林区效率均值最高,为1.036,其次是东北林区,为1.020。4)我国四大林区地区间固碳Malmquist指数没有出现σ收敛,相反,还存在绝对β发散现象,即四大林区地区内的林业固碳效率绝对值和增长率差异并没有随着时间而缩减。  相似文献   

5.
Preventing dangerous climate change requires actions on several sectors. Mitigation strategies have focused primarily on energy, because fossil fuels are the main source of global anthropogenic greenhouse gas emissions. Another important sector recently gaining more attention is the forest sector. Deforestation is responsible for approximately one fifth of the global emissions, while growing forests sequester and store significant amounts of carbon. Because energy and forest sectors and climate change are highly interlinked, their interactions need to be analysed in an integrated framework in order to better understand the consequences of different actions and policies, and find the most effective means to reduce emissions. This paper presents a model, which integrates energy use, forests and greenhouse gas emissions and describes the most important linkages between them. The model is applied for the case of Finland, where integrated analyses are of particular importance due to the abundant forest resources, major forest carbon sink and strong linkage with the energy sector. However, the results and their implications are discussed in a broader perspective. The results demonstrate how full integration of all net emissions into climate policy could increase the economic efficiency of climate change mitigation. Our numerical scenarios showed that enhancing forest carbon sinks would be a more cost-efficient mitigation strategy than using forests for bioenergy production, which would imply a lower sink. However, as forest carbon stock projections involve large uncertainties, their full integration to emission targets can introduce new and notable risks for mitigation strategies.  相似文献   

6.
区域层面的森林碳收支估算研究有利于为整体层面持续固碳增汇的森林经营提供科学参考,评估森林碳汇对减少区域内碳排放的贡献。采用温室气体清单估算法,对2000、2005和2010年贵州省森林碳汇进行估算,结果表明:贵州省森林碳汇从15.380×106增长到22.447×106、24.314×106 t CO2,呈稳定增长趋势,占全省碳排放量的6.73%~10.35%。贵州省尚有161.70×104 hm2宜林地,如果能用于发展碳汇林业,每年可吸收CO2达2.379×106 t,30年内将吸收CO2达71.370×106 t。贵州省正处于碳排放增长阶段,相对于森林碳汇而言,全区域碳减排工作任重道远,森林碳汇能力有很大的提升空间。  相似文献   

7.
Including the forestry sector as a mitigation option is critical to successful implementation of the United Nations Framework Convention on Climate Change. Since emissions trading and other related economic instruments are likely to be used to meet the treaty's goals, integrating carbon credits from the forestry sector in an emissions trading system and into the Clean Development Mechanism and Joint Implementation is necessary if the GHG mitigation potential of the forestry sector is to be fully realized.Some of the concepts presented in this paper build on a discussion paper prepared for the Australian Greenhouse Challenge Office, preparatory to a sinks workbook. The sinks workbook is designed to help Australian companies measure carbon sequestration from projects undertaken to fulfill their pledges as part of the Australian government's voluntary Greenhouse Challenge initiative. The ideas presented in the original discussion paper (as well as in this paper) were intended to stimulate discussion and do not necessarily reflect the position of the Australian government.This paper outlines some of the methodological questions raised in determining how to generate credits from forestry projects in the context of the Clean Development Mechanism, Joint Implementation and national emissions trading programs. These include baseline determination, which carbon pools to count, leakage issues, carbon accounting methods and the fate of wood products.  相似文献   

8.
Afforestation has the potential to offset the increased emission of atmospheric carbon dioxide and has therefore been proposed as a strategy to mitigate climate change. Here we review the opportunities for carbon (C) offsets through open lichen woodland afforestation in the boreal forest of eastern Canada as a case study, while considering the reversal risks (low productivity, fires, insect outbreaks, changes in land use and the effects of future climate on growth potential as well as on the disturbances regime). Our results suggest that : (1) relatively low growth rate may act as a limiting factor in afforestation projects in which the time available to increase C is driven by natural disturbances; (2) with ongoing climate change, a global increase in natural disturbance rates, mainly fire and spruce budworm outbreaks, may offset any increases in net primary production at the landscape level; (3) the reduction of the albedo versus increase in biomass may negatively affect the net climate forcing; (4) the impermanence of C stock linked to the reversal risks makes this scenario not necessarily cost attractive. More research, notably on the link between fire risk and site productivity, is needed before afforestation can be incorporated into forest management planning to assist climate change mitigation efforts. Therefore, we suggest that conceivable mitigation strategies in the boreal forest will likely have to be directed activities that can reduce emissions and can increase C sinks while minimizing the reversal impacts. Implementation of policies to reduce Greenhouse Gases (GHG) in the boreal forest should consider the biophysical interactions, the different spatial and temporal scales of their benefits, the costs (investment and benefits) and how all these factors are influenced by the site history.  相似文献   

9.
Public policies are promoting biofuels as an alternative to fossil fuel consumption in order to mitigate greenhouse gas (GHG) emissions. However, the mitigation benefit can be at least partially compromised by emissions occurring during feedstock production. One of the key sources of GHG emissions from biofuel feedstock production, as well as conventional crops, is soil nitrous oxide (N2O), which is largely driven by nitrogen (N) management. Our objective was to determine how much GHG emissions could be reduced by encouraging alternative N management practices through application of nitrification inhibitors and a cap on N fertilization. We used the US Renewable Fuel Standards (RFS2) as the basis for a case study to evaluate technical and economic drivers influencing the N management mitigation strategies. We estimated soil N2O emissions using the DayCent ecosystem model and applied the US Forest and Agricultural Sector Optimization Model with Greenhouse Gases (FASOMGHG) to project GHG emissions for the agricultural sector, as influenced by biofuel scenarios and N management options. Relative to the current RSF2 policy with no N management interventions, results show decreases in N2O emissions ranging from 3 to 4 % for the agricultural sector (5.5–6.5 million metric tonnes CO2?eq.?year?1; 1 million metric tonnes is equivalent to a Teragram) in response to a cap that reduces N fertilizer application and even larger reductions with application of nitrification inhibitors, ranging from 9 to 10 % (15.5–16.6 million tonnes CO2?eq.?year?1). The results demonstrate that climate and energy policies promoting biofuel production could consider options to manage the N cycle with alternative fertilization practices for the agricultural sector and likely enhance the mitigation of GHG emissions associated with biofuels.  相似文献   

10.
通过文献调研收集广东电力生产最新的能源消费数据和排放因子,采用“自上而下”方法估算1995—2011年广东电力行业的直接和间接GHG(温室气体)排放量,量化直接排放量的不确定性,绘制GHG排放流向图,并且根据GHG排放特征提出减排建议. 结果表明:①虽然受经济、环境和能源政策的影响,与1995年相比,2011年广东电力生产的GHG总排放量仍增长438%,达3.44×108 t,其中直接排放量达2.78×108 t,不确定性为±11%. ②从发电能源结构角度考虑,燃煤发电是电力生产的最大GHG排放源,2011年其排放量占总排放量的76%;而从用电终端考虑,工业用电是最大的GHG排放源,2011年其排放量占电力生产GHG总排放量的66%. ③1995—2011年,用电终端总体电力GHG排放强度下降了16%,居民用电人均GHG排放量上升了260%,单位综合发电量的GHG排放系数微升了1%. ④发电能源结构和终端产业结构的低碳化以及控制居民用电的GHG排放量等措施可减排2011年广东电力生产GHG总排放量的44%.   相似文献   

11.
Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation.  相似文献   

12.
This paper employs a review of the technical literature to estimate the potential decrease in greenhouse gas (GHG) emissions that could be achieved by increasing the application of gas engines in China in three sectors: urban public transport vehicle; shipping; and thermal power plants. China’s gas engine development strategies and three types of gas resource are discussed in the study, which indicates that gas engines could decrease GHG emissions by 520 megatonnes (Mt) of carbon dioxide equivalent (CO2e) by 2020. This would account for 9.7 % of the government’s target for decreasing GHG emissions and is dominated by methane recovery from the use of coal mine gas (CMG) and landfill gas (LFG) for power generation. In the public urban transport vehicle and shipping sectors the low price of natural gas and the increasing demand for the control of harmful emissions could spur the rapid uptake of gas engine vehicles. However, the development of CMG- and LFG-fuelled power plants has been limited by the unwillingness of local enterprises to invest in high-performance gas engine generators and the associated infrastructure. Therefore, further compulsory policies that promote CMG use and LFG recovery should be implemented. Moreover, strict regulations on limiting methane leakage during the production and distribution of gas fuels are urgently needed in China to prevent leakage causing GHG emissions and largely negating the climate benefits of fuel substitution. Strategies for increasing the application of gas engines, promoting gas resources and recovering methane in China are instrumental in global GHG mitigation strategies.  相似文献   

13.
以温室气体排放源和吸收汇为基础,构建了大学校园温室气体排放量化研究框架,并以辽宁工业大学为例,通过走访调研、IPCC排放清单等方法综合,核算了该高校温室气体排放情况.结果显示2014年辽宁工业大学校园温室气体净排放量为3.89×107kg CO2 eq.,人均排放量为2.02 ×103 kg CO2 eq.,主要排放源为外购热力、电力消耗及垃圾处理.并与国内外其他大学的研究结果进行了对比分析,寻求校园温室气体减排的潜力,可为低碳校园的创建提供理论依据与实践经验.  相似文献   

14.
Electric utilities in the US have initiated forestry projects to conserve energy and to offset carbon dioxide (CO2) emissions. In 1995, 40 companies raised US$2.5 million to establish the non-profit UtiliTree Carbon Company which is now sponsoring eight projects representing a mix of rural tree planting, forest preservation, forest management and research efforts at both domestic (Arkansas, Louisiana, Mississippi, and Oregon) and international sites (Belize and Malaysia). The projects include extensive external verification. Such forestry projects — properly documented, monitored and verified — should be a component of domestic and international strategies to address greenhouse gas (GHG) emissions, due to GHG benefits, cost-effectiveness and many other environmental benefits (e.g., related to habitat, erosion and biodiversity). These projects on average are projected to manage CO2 at a cost of about US $1 per ton. Experts have determined through a series of technical workshops and projects that GHG benefits can be accurately quantified for most types of forestry projects and, in fact, forestry projects in general present no greater challenges than energy-related projects. Near-term policy decision-making related to CO2 management via forestry is discussed.  相似文献   

15.
Worldwide, paper production is a major industry that contributes about 3 percent of Gross World Product. The paper cycle involves a broad range of natural resource and environmental impacts because fiber supply relies on trees, paper manufacturing requires fuel inputs, and paper waste disposal can contribute to emissions of the potent greenhouse gas (GHG), methane (CH4). In some countries, the paper cycle may be seen as a net sink for GHG because of reliance on renewable wood by-products and the maintenance of forest plantations. On a worldwide basis, however, this study demonstrates that the paper cycle is a significant contributor to GHG emissions, adding emissions at least comparable in magnitude to that of Australia each year. The estimated global warming contribution of paper in landfills is estimated to be similar to that of paper manufacturing processes, on a heating-equivalent basis. In some temperate regions, original old-growth forests are still harvested to supply pulpwood, resulting in a significant loss of carbon (C) storage. In theory, the paper cycle holds the promise of achieving zero net emissions if pulpwood production, consumption and disposal are carefully managed. In practice, even stabilization of emissions at current levels would be challenging and entail changes comparable to a 20 percent reduction in CH4 generation from landfilled paper, and a 2.5 percent annual increase in plantation establishment would be needed to offset the projected increase in emissions from paper manufacturing.  相似文献   

16.
The global waste sector produces, on average, 2–5 % of global anthropogenic greenhouse gas (GHG) emissions. The amount of GHG emissions has grown steadily and is predicted to increase considerable in the forthcoming decades because of the increases in population and gross domestic product (GDP). However, the GHG mitigation opportunities for the sector are still fully not exploited, in particularly in developing countries. A series of initiatives were highly successful and showed that large reductions in emissions are possible. This study aims to propose a holistic quantification model, which can be used for estimation of waste generation and evaluation of the potential reduction of GHG emissions in waste sector for developing countries with a particular application to Vietnam. The two scenarios set for the study were business as usual (BaU) which waste management is assumed to follow past and current trends and CounterMeasure (CM) which alternative waste treatment and management are assessed. Total emissions in the BaU scenario are projected to increase from 29.47 MtCO2eq in 2010 to 85.60 MtCO2eq by 2030 and 176.32 MtCO2eq by 2050. The highest emissions are due to methane (CH4) released by disposal sites, accounting for about 60 % of the GHG emissions from waste in Vietnam in 2030. This emission is projected to increase significantly (67 % in 2050), unless more of the methane is captured and used for energy generation. The CM scenario gives emission reductions from 25.7 % (2020), 40.5 % (2030) to 56.6 % (2050) compared to the BaU scenario. The highest GHG reduction is achieved through recycling, followed by methane recovery to optimize the co-benefit for climate change mitigation.  相似文献   

17.
An increased use of wood products and an adequate management of forests can help to mitigate climate change. However, planning horizons and response time to changes in forest management are usually long and the respective GHG effects related to the use of wood depend on the availability of harvested wood. Therefore, an integral long-term strategic approach is required to formulate the most effective forest and wood management strategies for mitigating climate change.The greenhouse gas (GHG) dynamics related to the production, use and disposal of wood products are manifold and show a complex time pattern. On the one hand, wood products can be considered as a carbon pool, as is the forest itself. On the other hand, an increased use of wood can lead to the substitution of usually more energy-intense materials and to the substitution of fossil fuels when the thermal energy of wood is recovered. Country-specific import/export flows of wood products and their alternative products as well as their processing stage have to be considered if substitution effects are assessed on a national basis.We present an integral model-based approach to evaluate the GHG impacts of various forest management and wood use scenarios. Our approach allows us to analyse the complex temporal and spatial patterns of GHG emissions and removals including trade-offs of different forest management and wood use strategies. This study shows that the contributions of the forestry and timber sector to mitigate climate change can be optimized with the following key recommendations: (1) the maximum possible, sustainable increment should be generated in the forest, taking into account biodiversity conservation as well as the long-term preservation of soil quality and growth performance; (2) this increment should be harvested continuously; (3) the harvested wood should be processed in accordance with the principle of cascade use, i.e. first be used as a material as long as possible, preferably in structural components; (4) waste wood that is not suitable for further use should be used to generate energy. Political strategies to solely increase the use of wood as a biofuel cannot be considered efficient from a climate perspective; (5) forest management strategies to enhance carbon sinks in forests via reduced harvesting are not only ineffective because of a compensatory increase in fossil fuel consumption for the production of non-wooden products and thermal energy but also because of the Kyoto-“cap” that limits the accountability of GHG removals by sinks under Article 3.3 and 3.4, at least for the first commitment period; (6) the effect of substitution through the material and energy use of wood is more significant and sustained as compared with the stock effects in wood products, which tend towards new steady-state flow equilibria with no further increase of C stocks; (7) from a global perspective, the effect of material substitution exceeds that of energy recovery from wood. In the Swiss context, however, the energy recovery from wood generates a greater substitution effect than material substitution.  相似文献   

18.
Reporting of CO2 emissions and removals from the landuse change and forestry (LUCF) sector is assessed in this paper based onthe National GHG inventories and the National Communications submittedby the Annex-I countries. LUCF sector is a net sink for 27 countries outof 31 countries and a source for Australia, Estonia, Lithuania and UnitedKingdom. LUCF sector for Annex-I countries, as a group is a net sink of2035 Tg CO2 (555 Tg Carbon). The sink feature is largely due toCO2 removal by the existing forests, plantations and other trees.Forest and grassland conversion (deforestation) is not a major source ofCO2 in the Annex-I countries. Many Annex-I countries have notfully adopted the reporting format of IPCC limiting the comparability andtransparency. Several Annex-I countries have modified the CO2emission/removal estimates for 1990, but have not explained the reasons.Reporting of uncertainty is very limited. The methods adopted andparticularly reporting is inadequate to meet the requirements foroperationalising the Kyoto Protocol articles relevant to LUCF;comparability, transparency and verifiability.  相似文献   

19.
The rate of carbon accumulation in the atmosphere can be reduced by decreasing emissions from the burning of fossil fuels and by increasing the net uptake (or reducing the net loss) of carbon in terrestrial (and aquatic) ecosystems. The Kyoto Protocol addresses both the release and uptake of carbon. Canada is developing a National Forest Carbon Monitoring, Accounting and Reporting System in support of its international obligations to report greenhouse gas sources and sinks. This system employs forest-inventory data, growth and yield information, and statistics on natural disturbances, management actions and land-use change to estimate forest carbon stocks, changes in carbon stocks, and emissions of non-CO2 greenhouse gases. A key component of the system is the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS). The model is undergoing extensive revisions to enable analyses at four spatial scales (national, provincial, forest management unit and stand) and in annual time steps. The model and the supporting databases can be used to assess carbon-stock changes between 1990 and the present, and to predict future carbon-stock changes based on scenarios of future disturbance rates and management actions.  相似文献   

20.
研究中国保护性耕作净碳汇的时空格局对其推广政策的合理制定具有重要意义。在分析保护性耕作固碳排碳机理和构建其测度方法的基础上,以中国各省(市、自治区)为单元,对2000—2019年中国保护性耕作净碳汇的时空格局进行分析,并对其潜力进行预测。结果表明:(1)每年保护性耕作的碳汇基本都是碳排的2倍,土壤固碳占保护性耕作碳汇的2/3以上,生物固碳占比小于1/3。(2)中国保护性耕作净碳汇在时间上呈现逐年递增趋势,其中,华北、西北和东南地区增幅较大;在空间上表现为扩张—集聚—扩张态势,其重心由北向南移动。(3)中国保护性耕作净碳汇具有明显的空间非均衡性特征,2019年呈现华北、西北和东南地区“三足鼎立”之格局,河南、山东、内蒙古、新疆、安徽、湖北和江西7省区属于高碳汇区,河北、吉林、陕西和山西属于低碳汇区,其他省份属于碳中和区。(4)2020—2030年中国保护性耕作的净碳汇潜力继续保持增长态势,2030年的峰值将处于5794.38万~7962.93万t C之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号