首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Environmental factors were investigated across a shrub-herbaceous ecotone (sharp zone of change) on a sloping site underlain by shallow groundwater on the arid floor of Owens Valley, California. Dominant plant species were salt rabbitbrush (Chrysothamnus nauseosus ssp. consimilis [E. Greene] Hall and Clements) and saltgrass (Distichlis spicata var. stricta EL.] E. Greene); typical of many similar habitats across the Great Basin. Historic air photographs were analyzed, and soil properties, water table levels and shrub and herbaceous cover were measured at discrete sample points. To investigate soil and vegetation spatial properties, sample points were apportioned on both sides of the ecotone. Land management practices and fire were ruled out as causal factors for the ecotone which remained stable through a 45-year period of air photo record. Soil textural, chemical and hydraulic properties were similar across the ecotone and were uniform throughout the site. Only depth to the water table changed significantly in a gradient perpendicular to the ecotone. The shrub-herbaceous ecotone was located where the water table depth fluctuated periodically between 0.8 and 1.2 m; deeper water tables than this range favors shrub cover while shallower depths favors meadow vegetation. When extrapolated to hydrologic management such as groundwater pumping, such a shallow depth and a narrow range of amplitude could restrict options for water development if maintenance of meadow vegetation is a goal.  相似文献   

2.
The multifaceted development of an erosion surface on Santa Barbara Island, Channel Islands National Park, California, has led to this study of the relationship between soils and vegetation. A dry Mediterranean climate and past attempts at farming and introductions of alien species have led to vegetative degradation accompanied by both gully and surface erosion. Soil and vegetation analyses show this erosion to be in a location of transition. The soils are Typic Chromoxererts (Vertisol Order) with high clay, salinity, and sodium contents. The vegetation is ecotonal in nature, grading from a principally alien annual grassland withAvena fatua andAtriplex semibaccata to a shrub community dominated by the nativeSuaeda californica. Management toward revegetation and stabilization of this island ecosystem will be difficult with high clay, saline-sodic soils and disturbed vegetation.  相似文献   

3.
We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse (Mus musculus) and the native western harvest mouse (Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow (Salix) cover and density and cottonwoods (Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.  相似文献   

4.
Measurements of xylem water potential, leaf conductance, and leaf pressure–volume characteristics on the geothermal endemic Dichanthelium lanuginosum var. thermale (DILA) were used to delineate operational ranges during wet and dry years and among several microsites at Little Geysers, Sonoma County, California, USA. Plants seldom experienced water potentials more negative that −1.5 MPa. Other nongeothermal, widespread species experienced the lower water potentials typical of chaparral and woodland plants. DILA was able to effectively utilize geothermal water while the widespread species could not and was able to keep stomata open during most of the year. There was evidence to suggest that DILA had some ability to acclimate with significant shifts in Πo and ψo during the dry 1994 summer, especially in the upland microhabitat. Nevertheless, minimum leaf turgor values in the upland came very close to, or dropped below, the 0.2–0.3 MPa threshold thought necessary to maintain stomatal opening and photosynthesis. DILA thus depends upon the unique water status of fumarole soils in the vicinity of the Little Geysers to persist in an otherwise lethal regional mosaic of climate, soil, and vegetation. The physiological data were used to derive reference ranges for subsequent monitoring of DILA at Little Geysers. Such ranges are required to determine the future impact, if any, of geothermal development on the persistence of this rare grass and its complex ecosystem.  相似文献   

5.
After the June 1982 floods in Essex, Connecticut, USA, reseeding for stabilization of exposed pond bottoms and subsequent rebuilding of a dam on the Mill Pond, Essex, CT resulted in rooted, floating aquatic mats ofPhalaris arundinacea L. This required that the site be weed harvested to restore open water. It is suggested that the species not be used to temporarily stabilize pond bottom soils because of its great and unexpected adaptability to aquatic situations.  相似文献   

6.
ABSTRACT: Twenty-six aspen (Populus tremuloides Michx.), 20 subalpine fir (Abies lasiocarps (Hook.) Nutt.), and 20 Engelmann spruce (Pices engelmanil (Parry) Engelm.) of various sizes were cut under water and suspended in permanent reserviors at a northern Utah site. The reservoirs were asealed so that all water loss was due to consumption by the trees. Sap velocities, as computed from heat pulse velocities, were related to conducting areas of the tree trunks. Computed transpiration volumes were then correlated with actual water losses from the reservoirs. Coefficients of determination (R2) of 0.87, 0.86, and 0.82 were obtained for the fir, aspen, and sprucs, respectively. Reservoir water loss for each species for each season was then used to adjust a plant activity index for computing transpiration within ASPCON, a model describing the hydrology of aspen to conifer succession. The plant activity index reflects the variation in the capability of a plant community to transpire water over the year. Assumptions and limitations of the heat pulse velocity technique are also outlined.  相似文献   

7.
Vegetation and soil recovery in wilderness campsites closed to visitor use   总被引:3,自引:0,他引:3  
Recreational use of wilderness results in impacts to vegetation and soil in trails and campsites. Traditionally, campsite impact studies have compared campsites receiving various levels of use with unused control areas. Field studies in Sequoia National Park, California, indicate that the degree of impact to vegetation and soils also varies within campsites. The central areas of campsites, where trampling is concentrated, show lower plant species diversity, differences in relative species cover, more highly compacted soils, and lower soil nutrient concentrations than do peripheral, moderately trampled, and untrampled areas within the same campsite. Three years after closure to visitor use, the central areas show less increase in mean foliar plant cover, and soils remain more highly compacted than in previously moderately trampled areas of the same sites. Changes in relative species cover over time are used to assess both resiliency to trampling and species composition recovery within campsites closed to visitor use.  相似文献   

8.
We examined long-term (10 years) meadow plant community responses to (1) livestock grazing under riparian grazing utilization limits; (2) suspension of livestock grazing; and (3) meadow site wetness and precipitation on the Inyo National Forest, California. Observed trends in meadow plant species richness, diversity, and frequency of soil stabilizing species were not significantly different between grazed (N = 16) and non-grazed (N = 9) study sites (P > 0.12 in all cases). Modest increases in richness and diversity were observed over the study period, but frequency of soil stabilizing species was constant. These results suggest that riparian conservation grazing strategies implemented during the study period neither degraded nor hampered recovery of meadow plant community conditions relative to non-grazed conditions. Meadow site wetness was negatively correlated to richness (P < 0.01) and diversity (P < 0.01), but was positively correlated to soil stabilization (P = 0.02). Precipitation was not a significant predictor for plant community responses.  相似文献   

9.
Since wetland construction projects are becoming more commonplace, meaningful follow-up studies are needed to evaluate how these systems change over time. To that end, the objective of our study was to examine the temporal changes in plant community composition and water chemistry in two constructed wetlands. We investigated two wetland sites that were constructed in 2003 in northern Otsego County, NY, a county that is largely dominated by agriculture. Site 1 was previously an active cow pasture and site 2 was previously a wet meadow surrounded by agricultural fields. No active plant introduction was made during the construction; however, both sites were located in areas with many remnant wetlands and were connected to through-flowing streams. In 2004 (Year 1) and 2010 (Year 7), the plant community composition and nitrogen retention were assessed. We found that both sites experienced site-wide declines in plant species richness, including the loss of upland and facultative upland species and the unanticipated loss of facultative wetland and some obligate species. We propose that high water levels, which, at their maximum depth were >1.5 m deeper than in Year 1, maintained by landowners in the years after the initial survey, may have been responsible for the unexpected loss of wetland species. We also found that site 1 exhibited considerable nitrogen retention in both Year 1 and Year 7; however, N concentrations were low at site 2 in both years.  相似文献   

10.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

11.
Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat conditions in a mosaic of patches of well-established grassed areas and bare, nonvegetated areas. Factors, including soil CO2, CH4, O2, nutrients, and other general soil conditions, were measured in relation to species distribution and grass biomass in the field. Cynodon dactylon was the dominant grass in the established grass areas but was less abundant in the areas bordering the bare areas where Paspalum paspalodes and Sporobolus africanus were common. A number of soil factors measured were significantly correlated with grass biomass and these included Mg, Ca, Zn, Mn, K, temperature, moisture, and CO2. However, a laboratory bioassay using the growth of C. dactylon with soils removed from the landfill indicated that there were no differences in the soils from the bare areas and those that supported high plant biomass. Thus, no nutrient deficiency or chemical toxicity was inherent in the soil in the laboratory. The results of the field investigation and bioassay indicated that soil CO2 as a result of landfill gas infiltration into the root zone was probably the main factor causing bare areas on the landfill where no grass species could colonize and grow and that C. dactylon was more sensitive to elevated soil CO2 than other grass species such as P. paspalodes and S. africanus.  相似文献   

12.
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers. (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.  相似文献   

13.
Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.  相似文献   

14.
ABSTRACT: This article reports the findings of a case study of a major California water management district's effort to change its management approach. The following key findings and factors have influenced the Salinas basin management plan (BMP) and its progress: (1) the Salinas Valley is an economy dominated by highly sophisticated irrigated agriculture dependent on ground water; (2) a persistent pattern of agricultural overdraft of ground water has hurt growers primarily in the north end of the valley via induced saline intrusion of irrigation wells; (3) a complex set of water institutions, property and water rights, and land lease practices offer little incentive for good stewardship of land and water; and (4) the BMP approach initially may have intensified tension among growers and between growers and other water user groups. Water rules and practices in the Salinas Valley and Monterey County have evolved through a long historical process of adaptations. Therefore, any significant changes in local water use practices need to be understood in terms of cultural change, that is, changes in deeply held values, beliefs, and assumptions. We believe the BMP and the MCWRA are succeeding when evaluated from this evolutionary perspective. The fact that both still exist relatively intact testifies that they are working, albeit slowly.  相似文献   

15.
Lepus californicus ), perennial plant cover, and structural diversity of perennial plants were evaluated from spring 1994 through winter 1995 at the Desert Tortoise Research Natural Area (DTNA), in the Mojave Desert, California. Abundance and species richness of birds were higher inside than outside the DTNA, and effects were larger during breeding than wintering seasons and during a high than a low rainfall year. Ash-throated flycatchers (Myiarchus cinerascens), cactus wrens (Campylorhynchus brunneicapillus), LeConte's thrashers (Toxostoma lecontei), loggerhead shrikes (Lanius ludovicianus), sage sparrows (Amphispiza belli), and verdins (Auriparus flaviceps) were more abundant inside than outside the DTNA. Nesting activity was also more frequent inside. Total abundance and species richness of lizards and individual abundances of western whiptail lizards (Cnemidophorous tigris) and desert spiny lizards (Sceloporus magister) were higher inside than outside. In contrast, abundance of black-tailed hares was lower inside. Structural diversity of the perennial plant community did not differ due to protection, but cover was 50% higher in protected areas. Black-tailed hares generally prefer areas of low perennial plant cover, which may explain why they were more abundant outside than inside the DTNA. Habitat structure may not affect bird and lizard communities as much as availability of food at this desert site, and the greater abundance and species richness of vertebrates inside than outside the DTNA may correlate with abundances of seeds and invertebrate prey.  相似文献   

16.
Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet multiple goals relating to sensitive species, fuels reduction, forest products, water, carbon storage, and ecosystem restoration. Using the Kings River area of the Sierra Nevada as a case study, we create areas of topographically-based units, Landscape Management Units (LMUs) using a three by three matrix (canyon, mid-slope, ridge-top and northerly, southerly, and neutral aspects). We describe their size, elevation, slope, aspect, and their difference in inherent wetness and solar radiation. We assess the predictive value and field applicability of LMUs by using existing data on stand conditions and two sensitive wildlife species. Stand conditions varied significantly between LMUs, with canyons consistently having the greatest stem and snag densities. Pacific fisher (Martes pennanti) activity points (from radio telemetry) and California spotted owl (Strix occidentalis occidentalis) nests, roosts, and sightings were both significantly different from uniform, with a disproportionate number of observations in canyons, and fewer than expected on ridge-tops. Given the distinct characteristics of the LMUs, these units provide a relatively simple but ecologically meaningful template for managers to spatially allocate forest treatments, thereby meeting multiple National Forest objectives. These LMUs provide a framework that can potentially be applied to other fire-dependent western forests with steep topographic relief.  相似文献   

17.
Boggs, Johnny, Ge Sun, David Jones, and Steven G. McNulty, 2012. Effect of Soils on Water Quantity and Quality in Piedmont Forested Headwater Watersheds of North Carolina. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/jawr.12001 Abstract: Water quantity and quality data were compared from six headwater watersheds on two distinct soil formations, Carolina Slate Belt (CSB) and Triassic Basins (TB). CSB soils are generally thicker, less erodible, and contain less clay content than soils found in TB. TB generated significantly more discharge/precipitation ratio than CSB (0.33 vs. 0.24) in the 2009 dormant season. In the 2009 growing season, TB generated significantly less discharge/precipitation ratio than CSB (0.02 vs. 0.07). Over the entire monitoring period, differences in discharge/precipitation ratios between CSB and TB were not significantly different (0.17 vs. 0.20, respectively). Storm‐flow rates were significantly higher in TB than CSB in both dormant and growing season. Benthic macroinvertebrate biotic index scores were excellent for all streams. Nutrient concentrations and exports in CSB and TB were within background levels for forests. Low‐stream nitrate and ammonium concentrations and exports suggested that both CSB and TB were nitrogen limited. Soils appear to have had a significant influence on seasonal and storm‐flow generation, but not on long‐term total water yield and water quality under forested conditions. This study indicated that watersheds on TB soils might be more prone to storm‐flow generation than on CSB soils when converted from forest to urban. Future urban growth in the area should consider differences in baseline hydrology and effects of landuse change on water quantity and quality.  相似文献   

18.
Humans have severely impacted riparian ecosystems through water diversions, impoundments, and consumptive uses. Effective management of these important areas is becoming an increasingly high priority of land managers, particularly as municipal, industrial, and recreational demands for water increase. We examined radial tree growth of four riparian tree species (Pinus jeffreyi, Populus trichocarpa, Betula occidentalis, and Pinus monophylla) along Bishop Creek, California, and developed models relating basal area increment (BAI) and relative basal area increment (RBAI) to climatic and stream flow variables. Between years 1995–1999, univariate regression analysis with stream flow explained 29 to 61% of the variation in BAI and RBAI among all species except P. trichocarpa; growth by P. trichocarpa was not significantly related to stream flows over this period. Stepwise linear regression indicated that species responded differently to climatic variables, and models based on these variables explained between 33 to 86% of variation in BAI and RBAI during the decade of the 1990s. We examined branch growth of P. trichocarpa for sensitivity to differences in stream flow regimes and found that annual branch growth did not vary between a high- and low-flow site, but that annual branch growth was significantly higher in wet years with greater stream flows. Our results support the establishment of site-specific management goals by land managers that take into account all of the important tree species present in riparian ecosystems and their differential responses to altered hydrologic condition. Instream flow requirements for maintaining tree growth and vigor are only one of the species-specific responses that need to be evaluated, and these assessments should attempt to separate experimentally stream-flow (managed) controls from climatic (unmanaged) controls on growth.  相似文献   

19.
Because of the nature of watersheds, the hydrologic and erosional impacts of logging and related road-building activities may move offsite, affecting areas downslope and downstream from the operation. The degree to which this occurs depends on the interaction of many variables, including soils, bedrock geology, vegetation, the timing and size of storm events, logging technology, and operator performance. In parts of northwestern California, these variables combine to produce significant water quality degradation, with resulting damage to anadromous fish habitat.Examination of recent aerial photographs, combined with a review of public records, shows that many timber harvest operations were concentrated in a single 83 km2 watershed in the lower Klamath River Basin within the past decade. The resulting soil disturbance in this case seems likely to result in cumulative off-site water quality degradation in the lower portion of the Basin.In California, both state and federal laws require consideration of possible cumulative effects of multiple timber harvest operations. In spite of recent reforms that have given the state a larger role in regulating forest practices on private land, each timber harvest plan is still evaluated in isolation from other plans in the same watershed. A process of collaborative state-private watershed planning with increased input of geologic information offers the best long-term approach to the problem of assessing cumulative effects of multiple timber harvest operations. Such a reform could ultimately emerge from the ongoing water quality planning process under Section 208 of the amended Federal Water Pollution Control Act.  相似文献   

20.
ABSTRACT: Wilson's Creek has an extensive history of toxicity from both point and nonpoint sources. Seven-day chronic daphnid (Ceriodaphnia dubia) bioassays identified one toxic site in the Wilson's Creek watershed. Procedures for the characterization phase of a Toxicity Identification Evaluation (TIE) were modified for chronic assessment and performed on four water samples from the toxic site. The characterization involved chemical/physical alterations of samples, combined with bioassays, to help in identification of the class(es) of toxicants; followed by chemical analyses. To help understand the additivity of mixtures, toxic units were derived. Successive samples contained concentrations of copper, cadmium, nickel and zinc that literature values describe as being chronically toxic to daphnids. Summed chronic toxic units for these values greatly exceeded ambient toxic units, and more than accounted for observed toxicity. Substantial fluctuations in water quality occurred over the five sampling periods of the characterization studies and a Test of Methods, June through August, 1991. This variability illustrates the difficulty in detecting and documenting nonpoint sources of pollution. Tests using living organisms, in conjunction with toxicity identification methods, on samples taken over time appear to be appropriate for detecting acute and chronic toxicity in areas impacted by intermittent point and nonpoint-source toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号