首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in light penetration and light attenuating components and processes are documented along 112 km of the major (NE/SW) axis of Green Bay (Lake Michigan) during a three-day cruise (May 25–27, 1982). Measurements included diffuse attenuation of downwelling irradiance (kd), Secchi disk transparency (SD), phytoplankton pigments (chlorophyll a and phaeophytin), turbidity (Tn), and dissolved color (absorbance). The relative importance of absorption and scattering to attenuation was calculated from paired measurements of kd and SD. Absorption and scattering coefficients were calculated; value estimates were supported by a strong linear relationship between the scattering coefficient (b) and Tn (b = 0.99 *Tn; r2= 097, n = 12). Light attenuation characteristics, including the extent of light penetration and the magnitudes and relative importance of absorption, scattering and individual attenuating components, were found to be heterogenous in space. This heterogeneity is due to the characteristics and positions of entry of fluvial discharges to the bay as they influence levels of dissolved color (Gelbstoff), phytoplankton standing crop, and inorganic particulates. Identification of key processes regulating light penetration and their potential for response to pollution control measures can aid in the development of a water quality management plan for Green Bay.  相似文献   

2.
ABSTRACT: Specific capacity data obtained from Well Construction reports which are available from USGS offices, can provide useful estimates of tranamissivity (T), and hydraulic conductivity (K), of an aquifer. The Chicot Aquifer in Louisiana is one of the largest sources of fresh ground water in North America. Hydrologic data collected for the Chicot Aquifer indicate that specific capacity tests can be used in estimating local and regional values for T and K, if the Cooper-Jacob equation for transient flow is used with proper corrections for well loss and partial penetration. Where full scale pumping test data are scarce, specific capacity test data that are adequately distributed spatially can be used to map changes in T and K values and can be summarized statistically to indicate applicable regional values. A computer program called “TGUESS” which is available from International Ground Water Modeling Center, Holcomb Research Institute, was used in this study. The contour maps for T and K values are prepared for different well depth intervals to avoid wide variation of values.  相似文献   

3.
This paper describes a methodology for modelling light pollution using geographical information systems (GIS) and remote sensing (RS) technology. The proposed approach attempts to address the issue of environmental assessment in sensitive suburban areas. The modern way of life in developing countries is conductive to environmental degradation in urban and suburban areas. One specific parameter for this degradation is light pollution due to intense artificial night lighting. This paper aims to assess this parameter for the Athens metropolitan area, using modern analytical and data capturing technologies. For this purpose, night-time satellite images and analogue maps have been used in order to create the spatial database of the GIS for the study area. Using GIS advanced analytical functionality, visibility analysis was implemented. The outputs for this analysis are a series of maps reflecting direct and indirect light pollution around the city of Athens. Direct light pollution corresponds to optical contact with artificial night light sources, while indirect light pollution corresponds to optical contact with the sky glow above the city. Additionally, the assessment of light pollution in different periods allows for dynamic evaluation of the phenomenon. The case study demonstrates high levels of light pollution in Athens suburban areas and its increase over the last decade.  相似文献   

4.
ABSTRACT: The penetration of sunlight into the water column plays a critical role in the aquatic ecosystem. This study investigates light attenuation through the water column of the Danshuei River estuary and explores the models for quantifying it. The measurement of photosynthetically active radiation (PAR) indicates that the conventional exponential attenuation of light with depth is a very good model. A light attenuation coefficient may be derived from the PAR measurements at each location. The simpler measurements of Secchi depth (SD) provide an approximate estimate of the attenuation coefficients through an inverse linear relationship. The results also reveal that the amount and kinds of materials, which are either dissolved or suspended in the water, control light attenuation through the water column. However, the linear regression with such a model results in very poor correlation, and a relatively large constant term for the Danshuei River estuary. The regression with salinity yields a good correlation, indicating that the fraction of sea water might be a good parameter for estimating light attenuation coefficient for practical application in the Danshuei River estuary.  相似文献   

5.
AESTRACT An evaluation of the Maxey-Eakin method for calculating recharge to ground-water basins in Nevada was performed. The evaluation consisted of comparing Maxey-Eakin estimates with independent estimates of recharge, and analyzing the nature of the differences between the groups of estimates. In the comparison with the Maxey-Eakin estimates, two different groups of independent estimates were used: (1) 40 recharge estimates that were identified from water budgets contained in reports by the Nevada Department of Conservation and Natural Resources and (2) 27 recharge estimates that were identified from previous studies that used models. The results of the comparisons indicate generally good agreement between the Maxey-Eakin estimates and both groups of independent estimates. To quantify this agreement, an analysis was conducted to estimate the uncertainty in the Maxey-Eakin method. The analysis produced an upper bound on the standard deviation of the Maxey-Eakin estimate for a given basin. For the group of 40 water-budget estimates, the upper bound on the standard deviation for an individual basin is 4,800 acre-ft/yr, and the corresponding coefficient of variation of the Maxey-Eakin estimate is no greater than 44 percent. For the group of 27 model estimates, the upper bound on the standard deviation is 4,100 acre-ft/yr, and the corresponding coefficient of variation is no greater than 24 percent.  相似文献   

6.
ABSTRACT: The U.S. Geological Survey has collected flood data for small, natural streams at many sites throughout Georgia during the past 20 years. Flood-frequency relations were developed for these data using four methods: (1) observed (log-Pearson Type HI analysis) data, (2) rainfall-runoff model, (3) regional regression equations, and (4) map-model combination. The results of the latter three methods were compared to the analyses of the observed data in order to quantify the differences in the methods and determine if the differences are statistically significant. Comparison of regression-estimates with observed discharges for sites having 20 years (1966 to 1985) and 10 years (1976 to 1985) of record at different sites of annual peak record indicate that the regression-estimates are not significantly different from the observed data. Comparison of rainfall-runoff-model simulated estimates with observed discharges for sites having 10 years and 20 years of annual peak record indicated that the model-simulated estimates are significantly and not significantly different, respectively. The biasedness probably is due to a “loss of variance” in the averaging procedures used within the model and the short length of record as indicated in the 10 and 20 years of record. The comparison of map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff indicate that the simulated estimates are not significantly different. Comparison of “improved” map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff data indicate that the simulated estimates are different. The average adjustment factor suggested by Lichty and Liscum to calculate the “improved” map-model overestimates in Georgia by an average of 20 percent for three recurrence intervals analyzed.  相似文献   

7.
Abstract: The impacts of runoff events on external suspended solids loading to Schoharie Reservoir, New York, and patterns of light scattering and sediment deposition in this reservoir are assessed. The assessment is based on monitoring of suspended solids concentrations in the reservoir's primary tributary, detailed vertical profiles of optical backscattering (a surrogate measure of light scattering) in the reservoir water column, and analysis of sediment trap collections, over a seven-month interval of high runoff. These impacts are reported to be tightly temporally coupled and strongly positively related to the magnitude of runoff events. The primary tributary entered the reservoir as a plunging inflow during runoff events, causing conspicuous subsurface peaks in light scattering, with vertical patterns that varied strongly for different events. Deposition quantified by near-bottom trap deployments is reported to be more representative than results from metalimnetic deployments that were generally within, rather than below, the turbid layers. Direct inputs of sediment, transported by density currents, are found to drive deposition, rather than resuspension/redeposition. More than 50 percent of the reported deposition occurred in less than 15 percent of the study period, associated with the four largest runoff events.  相似文献   

8.
ABSTRACT: Suspended sediment causes a range of environmental damage, including benthic smothering, irritation of fish gills, and transport of sorbed contaminants. Much of the impact, while sediment remains suspended, is related to its light attenuation, which reduces visual range in water and light availability for photosynthesis. Thus measurement of the optical attributes of suspended matter in many instances is more relevant than measurement of its mass concentration. Nephelometric turbidity, an index of light scattering by suspended particles, has been widely used as a simple, cheap, instrumental surrogate for suspended sediment, that also relates more directly than mass concentration to optical effects of suspended matter. However, turbidity is only a relative measure of scattering (versus arbitrary standards) that has no intrinsic environmental relevance until calibrated to a ‘proper’ scientific quantity. Visual clarity (measured as Secchi or black disc visibility) is a preferred optical quantity with immediate environmental relevance to aesthetics, contact recreation, and fish habitat. Contrary to common perception, visual clarity measurement is not particularly subjective and is more precise than turbidity measurement. Black disc visibility is inter‐convertible with beam attenuation, a fundamental optical quantity that can be monitored continuously by beam transmissometry. Visual clarity or beam attenuation should supplant nephelometric turbidity in many water quality applications, including environmental standards.  相似文献   

9.
Current surface mine regulations as ascribed under the Surface Mining Control and Reclamation Act of 1977 require that mine lands be returned to the approximate original contours (AOC) with an area coverage of at least 70% and to biological productivity equal to or greater than that which existed prior to mining. Six different procedures were evaluated on nine mine sites in northwestern Pennsylvania as to their suitability to estimate aboveground biomass on mines reclaimed as hayland and pastures. Biomass estimates determined by different procedures were compared to those obtained by random clip plots and with landowner estimates of the annual yield from each site. Biomass estimates determined from a disk meter and landowner interviews varied approximately ±10% from those obtained from random clip plots compared to a variation of ±8%–37% for the other procedures. The number of samples required to obtain reliable estimates within ±10% of the mean at 95% confidence intervals varied among the different sampling procedures according to the variance in biomass on the site. Although all procedures may be used either singly or in combination to estimate above ground biomass on reclaimed mine lands, the combination of the disk meter, profile board, and vegetation height is recommended because of their ease of measurement compared to the other procedures.  相似文献   

10.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   

11.
Knowledge of how polyacrylamide (PAM) penetrates and distributes in a soil profile after application in irrigation water is important for understanding PAM conditioning depth and evaluating its environmental effects. Little is known, however, about PAM distribution in soil because of the difficulty in quantifying PAM content in natural soils. By using a recently modified substrate-borne PAM quantification method, PAM distribution in columns of organic matter-removed soils was determined. Results showed that penetration of PAM into the soil was affected by salt level of irrigation water, soil texture, initial soil water content, water application method, and other factors. Polyacrylamide penetration depth was about one-eighth to one-half of the water penetration depth, with a particularly high PAM retention in the top few centimeters of the soil. Under different experimental conditions, the PAM retained in the top 0 to 2 cm of soil ranged from 16 to 95% of the total applied amount. More favorable solution-soil contact conditions, longer solution-soil contact time, and lower initial soil moisture caused much more PAM retention in the top few centimeters of the soil. High sorptive affinity of PAM on soil is the main reason for its low penetration into the soil. Although these results were not obtained from natural soils, they are still helpful in improving our understanding of PAM transport behavior in soils.  相似文献   

12.
ABSTRACT: Optical information on a water body is often required when only Secchi disk depths are available. Many limnologists and water managers have attempted to estimate diffuse light attenuation in water from Secchi depth data assuming a simple inverse relationship. However, we show theoretically that the product of Secchi depth and the diffuse attenuation coefficient is markedly dependent on the reflectance coefficient (“brightness”) of water. Data from 28 New Zealand lakes of diverse optical character demonstrated this dependence over a wide range of reflectance (1.1 to 35.9 percent). Uncritical estimation of attenuation coefficients for diffuse light from Secchi depths, using the currently available simple inverse expressions, is discouraged because of the possibility of bias.  相似文献   

13.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

14.
ABSTRACT: Estimates of the upper constraint on actual evapotranspiration are required as input data in the majority of rainfall-runoff models. This paper compares and discusses the applicability of Penman's potential evapotranspiration estimates and Morton's wet environment evapotranspiration estimates in rainfall-runoff modeling applications. Morton's wet environment evapotranspiration depends only on the atmospheric variables and is the estimate of evapotranspiration that would occur when water supply is not limiting. It is a conceptually more correct representation of the upper constraint on actual evapotranspiration compared to Penman's potential evapotranspiration which is dependent on the water supply to the soil-plant surfaces. Although Penman's potential evapotranspiration and Morton's wet environment evapotranspiration are two different quantities, comparison of the two estimates using data from different climatic regions throughout Australia indicate that they provide similar magnitudes of the upper limit of actual evapotranspiration at moderate climatic conditions when reliable estimates are required in rainfall-runoff models. The two estimates can therefore be used interchangeably in rainfall-runoff modeling applications.  相似文献   

15.
High penetration level of wind power has significant impact on the dynamic performance of power system. Power system with existing high-voltage direct current (HVDC) link may influence the stability of power system at high penetration level of wind power. This article investigates the stability issues of power system with existing HVDC link for different penetration level of doubly fed induction generator (DFIG) and direct drive synchronous generator (DDSG) based wind farms. The small signal stability analysis shows that power system with HVDC link has improved the stability of the power system for increased penetration of DFIG- and DDSG-based wind farms.  相似文献   

16.
The recently developed type transfer function (TTF) simulation approach was applied to generate a regional-scale nonpoint-source ground water vulnerability assessment for the San Joaquin Valley, California. The computationally comparatively inexpensive TTF approach produces quantitative estimates of contaminant concentrations for large regional scales through characteristic functions based on different soil textures and their leaching properties. The TTF simulations employed an extensive soil and recharge database to estimate atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) concentrations at a compliance depth of 3 m resulting from a surface application. Two different sets of TTFs with two different levels of upscaling were used for spatially uniform and distributed recharge estimates. Results show that estimated atrazine concentrations can be related to soil survey information. Areas with high potential vulnerability to atrazine leaching were found for soils with low organic carbon content and sandy loam and loam textures. Travel times for atrazine peak concentrations to the compliance depth ranged from 350 to 730 d. The extent of areas with estimated atrazine concentrations above the maximum contaminant level was less extensive when uniform annual recharge values were used. Simulated TTF concentrations were highest for eastern Fresno County, a vulnerability pattern that is also supported by field observations. The TTF modeling approach is shown to be a useful tool for quantitative pesticide leaching estimates at regional scales significantly larger than those of previous studies.  相似文献   

17.
ABSTRACT: Phytoplankton carbon-14 productivity at a depth of 50 percent of surface light and chlorophyll-α concentrations were measured every other month from November 1985 through September 1986 at 12 stations in the Charlotte Harbor estuarine system. Maximum productivity and chlorophyll-α concentrations occurred during summer or early autumn near the mouths of tidal rivers. Most of the variability in light-normalized productivity and chlorophyll-α could be attributed to two factors derived from Principal Component Analysis of ambient water-quality characteristics. One factor related to seasonal variability and the other to spatial variability. The seasonal factor incorporated the interaction of temperature and nutrients. The spatial factor incorporated the interaction of salinity, nutrients, and water color that resulted from the mixing of freshwater inflow and seawater. Although freshwater inflow increased the availability of nutrients in low salinity (less than 10‰) waters, the highly colored freshwater restricted light penetration and phytoplankton productivity. Maximum productivity and biomass occurred where color associated with the freshwater inflow had been diluted by seawater so that light and nutrients were both available. Concentrations of inorganic nitrogen were often at or below detection limit throughout most of the high salinity (greater than 20‰) waters of the estuary and was probably the most critical nutrient in limiting phytoplankton productivity.  相似文献   

18.
ABSTRACT: Deterministic models of watershed hydrology require accurate a priori estimates of soil, vegetation, and watershed parameters. Physical fidelity of these values to those of the prototype natural watershed is essential. One vegetation parameter most neglected, perhaps because it is least understood, is plant root activity. Plant roots directly or indirectly affect many hydrologic processes, including evaporation, transpiration, soil moisture, and ground water. One of their more important functions is in opening surface-connected hydraulic pathways for rainfall penetration. This paper presents the results of a study in which available information on roots has been applied in hydrologic computations.  相似文献   

19.
ABSTRACT: The thermal stratification characteristics of a flow-augmentation reservoir, Round Valley Reservoir, New Jersey, and attendant driving conditions were documented and analyzed for portions of three years. Substantial differences in the thermal stratification regime of the reservoir occurred in response to the documented changes in meteorological, operating, and light penetration conditions. The features of stratification that were affected included: the depth of the upper mixed layer, the average temperature of the epilimnion, the temperature gradient in the metalimnion, and the average temperature in the hypolimnion.  相似文献   

20.
ABSTRACT: Color of natural waters strongly influences their aesthetic appeal, suitability for recreational use, and aquatic habitat, but methods for routine specification of color have been lacking. An improved method has been developed for specifying water colors in the field. The water color, seen through an underwater viewer, is matched directly to Munsell standard patches observed simultaneously. The Munsell color-matching method was verified versus measurements of the underwater light field, made with a submersible spectroradiometer in 20 different natural waters in New Zealand (mainly lakes), which varied widely in color and other optical characteristics. Hue, the most important color attribute of natural waters, could be matched accurately; the saturation and brightness less so. Color standard patches are not available covering the full range of typically dark water colors, but fortunately, brightness can be measured with simple submersible light sensors. The Munsell color matching method seems suitable for routine water resources survey and monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号