首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A water quality monitoring program was undertaken from June 2004 to May 2005, on a monthly basis, in Polyphytos Reservoir of Aliakmon River. Depth, water temperature, dissolved oxygen, conductivity, pH and transparency (Secchi disk) were measured in situ, while collected water samples were analyzed in the laboratory for the determination of BOD, COD, total phosphorus (TP), ortho-phosphate (OP), chlorophyll-a (Chl-a), ammonium, nitrite and nitrate, total Kappajeldahl nitrogen (TKN) and heavy metals (Fe, Mn, Cu, Cr, Pb, Ni and Cd). Measured concentrations were compared to those from two previous studies conducted in July 1987 to June 1988 and January 1991 to February 1993. The following conclusions are drawn: the effect of the watershed on the lake environment, mostly through Aliakmon River, is significant, and it accelerates the eutrophication of the lake. The anoxic zones, which were defined in the lake, reinforce this conclusion. Nitrate, nitrite and ammonia were measured at lower concentrations compared to previous studies, while total phosphorus and chlorophyll-a were found at increased concentrations. The current trophic state of Polyphytos reservoir is eutrophic, based on the OECD method and Carlson's Trophic State Indices (TSI). The concentration of BOD and COD ranged at low levels. Furthermore, the mean concentrations of metals Fe, Mn, Cu, Cr, Pb, and Cd were below the potable water standards set by WHO and EU. During most part of the study period the ratio N/P for Polyphytos reservoir was higher than 7.2:1, and therefore, phosphorus is the limiting nutrient for algal growth.  相似文献   

2.
Trophic state allows for identification of problems and pressures that an ecosystem faces as well as demarcation of remedial measures. This study focuses on spatial and temporal variations in the trophic state and detection of possible causes of its divergence in Bhindawas Lake, India. The trophic state of the lake undulated between eutrophic and hyper-eutrophic state throughout the study period. Higher phosphorus concentration within the lake ecosystem is the dominant causal factor for its eutrophic state. The influence of other water quality parameters has also been analyzed using Spearman’s coefficient of correlation. Deviations between trophic state index (TSI)-chlorophyll-a (Chl-a), TSI-total phosphorus (TP), and TSI-Secchi depth (SD) pointed out that the lake is principally phosphorus limited, and its trophic status is influenced by non-algal turbidity to a large extent. Spatial analysis of trophic levels in geographic information system (GIS) helped in identification of pollution sources and chemical attributes affecting the trophic state of the lake. This study provides a rationale for further investigation of nutrient and sediment loading into the lake system and development of sustainable management and conservation strategy identifying suitable measures ascertaining the ecosystem integrity.  相似文献   

3.
Based on in situ water sampling and field spectral measurement from June to September 2004 in Lake Chagan, a comparison of several existing semi-empirical algorithms to determine chlorophyll-a (Chl-a) content was made by applying them to the field spectra and in situ chlorophyll measurements. Results indicated that the first derivative of reflectance was well correlated with Chl-a. The highest correlation between the first derivative and Chl-a was at 680 nm. The two-band model, NIR/red ratio of R710/670, was also an effective predictor of Chl-a concentration. Since the two-band ratios model is a special case of the three-band model developed recently, three-band model in Lake Chagan showed a higher resolution. The new algorithm named reverse continuum removal relies on the reflectance peak at 700 nm whose shape and position depend strongly upon chlorophyll concentration: The depth and area of the peak above a baseline showed a linear relationship to Chl-a concentration. All of the algorithms mentioned proved to be of value and can be used to predict Chl-a concentration. Best results were obtained by using the algorithms of the first derivative, which yielded R 2 around 0.74 and RMSE around 6.39 μg/l. The two-band and three-band algorithms were further applied to MERIS when filed spectral were resampled with regard to their center wavelengths. Both algorithms showed an adequate precision, and the differences on the outcome were small with R 2 = 0.70 and 0.71.  相似文献   

4.
基于灰色聚类方法的湖泊营养状态综合评价   总被引:1,自引:0,他引:1  
将湖泊水体的营养状态看作一个灰色系统,建立用于识别湖泊营养状态属性的灰色聚类综合评价模型,将水质级别作为一个灰类,水质状态作为灰色变量,根据灰色白化权函数聚类方法来确定水体营养状况归类。以太湖为例,基于分布全湖的20个监测点数据,运用灰色聚类法对其进行富营养状态综合评价,结果表明,监测时段太湖大部分水体基本处于中营养水平,局部湖面达到中度富营养状态,客观地反映了太湖湖区水体营养状况。  相似文献   

5.
Interpretations of state and trends in lake water quality are generally based on measurements from one or more stations that are considered representative of the response of the lake ecosystem. The objective of this study is to examine how these interpretations may be influenced by station location in a large lake. We addressed this by analyzing trends in water quality variables collected monthly from eight monitoring stations along a transect from the central lake to the north in Lake Taihu (area about 2,338 km2), China, from October 1991 to December 2011. The parameters examined included chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) concentrations, and Secchi disk depth (SD). The individual variables were increasingly poorly correlated among stations along the transect from the central lake to the north, particularly for Chl a and TP. The timing of peaks in individual variables was also dependent on station location, with spectral analysis revealing a peak at annual frequency for the central lake station but absence of, or much reduced signal, at this frequency for the near-shore northern station. Percentage annual change values for each of the four variables also varied with station and indicated general improvement in water quality at northern stations, particularly for TN, but little change or decline at central lake stations. Sediment resuspension and tributary nutrient loads were considered to be responsible for some of the variability among stations. Our results indicate that temporal trends in water quality may be station specific in large lakes and that calculated whole-lake trophic status trends or responses to management actions may be specific to the station(s) selected for monitoring and analysis. These results have important implications for efficient design of monitoring programs that are intended to integrate the natural spatial variability of large lakes.  相似文献   

6.
Eutrophication has become a serious threat to the lake systems all over the world. This is mainly due to the pollution caused by anthropogenic activities. Carlson trophic state index (CTSI) is commonly used for the classification of trophic conditions of surface waters. The study is conducted to assess the trophic status of a tropical lake (Akkulam-Veli lake, Kerala, India) using CTSI based on Secchi disc depth (SD), total phosphorus (TP) and chlorophyll-a. The TSI values based on SD and TP are high (>70), indicating the hypereutrophic state which needs urgent action for the restoration of the fragile ecosystem. The higher TP in both lakes, and the lower value of chlorophyll-a in the Akkulam part, warrant explanation, are discussed here. The influence of other biochemical parameters in both the Akkulam and the Veli part of the lake has been assessed. Correlation analysis is conducted to study the effect of various water quality parameters. The variation in the water quality before and after the opening of sand bar is studied using paired t test. As almost all the lakes in the world are experiencing similar situation of extinction, this study is helpful to have an insight in the hydrochemistry of the lake as well as to identify the worst affected areas of the lakes.  相似文献   

7.
综合遥感与地面观测的巢湖水体富营养化评价   总被引:1,自引:0,他引:1  
提出一种将地面观测数据空间插值与遥感反演结合的湖泊富营养化评价方法与业务化运行模式。对叶绿素a等可反演参数利用遥感影像反演,并利用实测值校正获得高精度反演结果;对总磷等不易反演参数采用空间插值获取全湖区数据,采用综合营养指数法对巢湖富营养化状态进行反演,获得2015年5月12日巢湖富营养化状态空间分布情况。结果表明,巢湖全湖为轻度和中度富营养化状态,呈现出西半湖高于东半湖的总体空间分布趋势。结合相关数据对巢湖富营养化成因进行推断,认为南淝河等上游河流各类营养物质输入量较大是造成西半湖北部富营养化严重的主要成因;西南部杭埠河等河流氮磷输入量较大,但其他营养物质输入较少,使得该区域总体呈现出富营养化程度偏低的现象。  相似文献   

8.
Phytoplankton variation in large shallow eutrophic lakes is characterized by high spatial and temporal heterogenity. Understanding the pattern of phytoplankton variation and the relationships between it and environmental variables can contribute to eutrophic lakes management. In this study Taihu Lake, one of the largest eutrophic fresh water lake in China, was taken as study area. The water body of Taihu Lake was divided into five regions viz. Wuli bay (WB), Meilian Bay (MB), West Taihu Lake (WTL), Main Body of Taihu Lake (MBTL) and East Taihu Lake (ETL). Concentrations of chlorophyll-a and the related environmental variables were determined in each region in the period 2000–2003. Factor analysis and multivariate analysis were applied to evaluate the interactions between phytoplankton variation and environmental variables. Results showed that the highest average concentrations of TN, TP and Chl-a were observed in WB, followed in a descending order by MB and WTL, and the lowest concentrations of TN, TP and Chl-a were observed in MBTL and ETL. Chl-a and TP concentrations in most regions (except ETL) declined during the study period. It suggested that to some extent the lake was recovering from eutrophication. However, persistent ascending of TN and NH4–N in all five regions indicated the deteriorating of water quality in the study period. Results of multivariate showed that the relationships between phytoplankton biomass and environmental variables varied among regions. TP illustrated itself a controlling role on phytoplankton in WB, MB, WTL and MBTL according to the significant positive relations to phytoplankton biomass in these regions. Nitrogen could be identified as a limiting factor to phytoplankton biomass in ETL in view of the positive correlations between TN and phytoplankton and between NH4–N and phytoplankton. Spatial variation of interactions between phytoplankton and environmental parameters suggested proper eutrophication control measures were needed to restore ecological system in each region of Taihu Lake.  相似文献   

9.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

10.
This paper presents an application of water quality mapping through real-time satellite and ground data. The Lake Beysehir which is the largest freshwater lake and drinking water reservoir in Turkey was selected as the study area. Terra ASTER satellite image is used as remote sensing data source for water quality mapping in addition to simultaneously performed in-situ measurements. Ground data is collected simultaneously with the ASTER overpass on June 09, 2005 over the Lake Beysehir. The spatial distribution map is developed by using multiple regression (MR) technique for water quality parameter, which is chlorophyll-a (chl-a). The results indicate that simultaneous ground and satellite remote sensing data are highly correlated (R (2) > 0.86). In the image processing step, geometric correction, image filtering and development of water quality map procedures are performed with the ERDAS Imagine and ArcGIS 9.0 software. The trophic status of Lake Beysehir is considered to be oligotrophic with an average 1.55 microg/l chl-a concentration.  相似文献   

11.
Water pollution such as green algae blooms and eutrophication in freshwater fatally influences both water quality and human society. Water quality issues in the 4 major rivers in Korea, including the Nakdong, have recently become a major concern. For this reason, it is essential to monitor water quality parameters (WQPs) that have a widespread characteristic to ensure maintenance of an effective water management system. The possibility of utilizing remote sensing technology for monitoring water quality on a regional scale has been recently investigated. The main objective of this study is to evaluate potential applications of the Landsat 8 Operational Land Imager (OLI) for estimating water quality in the Nakdong River, Korea. Correlations between Landsat 8 bands and in situ measurements are determined, and water quality models are established for estimating suspended solids (SS), total nitrogen (TN), chlorophyll-a (Chl-a), and total phosphorus (TP). The results demonstrate that WQPs correlated well with band reflectance values from Landsat 8. Band 5 was reasonably correlated with all WQPs, particularly with SS (R?=??0.74) and Chl-a (R?=??0.71). This study constructed multiple regression equations for WQPs based on correlation analysis through band combination and band ratio. The spatial distribution of WQPs in the Nakdong River on October 27, 2013 and May 16, 2014 indicate that the river was nearly eutrophic from human activities. Based on the results, the Landsat 8 OLI may be an appropriate data for estimating and monitoring water quality parameters on a regional scale. However, further validation is required to support the findings of this study.  相似文献   

12.
基于环境一号卫星CCD数据的巢湖叶绿素a的动态监测   总被引:3,自引:1,他引:2  
环境一号卫星CCD数据具有获取周期短、空间分辨率高等特点,能够及时准确地监测叶绿素a的浓度变化和分布,其在内陆湖泊水质遥感监测方面具有良好的应用前景。文章通过星地同步地面实验,建立起巢湖水体的叶绿素a浓度遥感反演模型,利用2009年4月至2010年3月的环境一号卫星CCD数据,分季节对巢湖叶绿素a行动态监测和分析。结果表明,巢湖叶绿素a具有明显的时空分布特征,夏季叶绿素a浓度最高,冬季最低,秋季高于春季;西半湖湖区叶绿素a浓度一般高于东半湖湖区,西北部和中部湖区空间变化比较大,东部湖区变化较小。  相似文献   

13.
Water pollution has now become a major threat to the existence of living beings and water quality monitoring is an effective step towards the restoration of water quality. Lakes are versatile ecosystems and their eutrophication is a serious problem. Carlson Trophic State Index (CTSI) provides an insight into the trophic condition of a lake. CTSI has been modified for the study area and is used in this study. Satellite imagery analysis now plays a prominent role in the quick assessment of water quality in a vast area. This study is an attempt to assess the trophic state index based on secchi disk depth and chlorophyll a of a lake system (Akkulam?CVeli lake, Kerala, India) using Indian Remote Sensing (IRS) P6 LISS III imagery. Field data were collected on the date of the overpass of the satellite. Multiple regression equation is found to yield superior results than the simple regression equations using spectral ratios and radiance from the individual bands, for the prediction of trophic state index from satellite imagery. The trophic state index based on secchi disk depth, derived from the satellite imagery, provides an accurate prediction of the trophic status of the lake. IRS P6-LISS III imagery can be effectively used for the assessment of the trophic condition of a lake system.  相似文献   

14.
Toxic cyanobacteria threaten the water quality of drinking water sources across the globe. Two such water bodies in Canada (a reservoir on the Yamaska River and a bay of Lake Champlain in Québec) were monitored using a YSI 6600 V2-4 (YSI, Yellow Springs, Ohio, USA) submersible multi-probe measuring in vivo phycocyanin (PC) and chlorophyll-a (Chl-a) fluorescence, pH, dissolved oxygen, conductivity, temperature, and turbidity in parallel. The linearity of the in vivo fluorescence PC and Chl-a probe measurements were validated in the laboratory with Microcystis aeruginosa (r(2) = 0.96 and r(2) = 0.82 respectively). Under environmental conditions, in vivo PC fluorescence was strongly correlated with extracted PC (r = 0.79) while in vivo Chl-a fluorescence had a weaker relationship with extracted Chl-a (r = 0.23). Multiple regression analysis revealed significant correlations between extracted Chl-a, extracted PC and cyanobacterial biovolume and in vivo fluorescence parameters measured by the sensors (i.e. turbidity and pH). This information will help water authorities select the in vivo parameters that are the most useful indicators for monitoring cyanobacteria. Despite highly toxic cyanobacterial bloom development 10 m from the drinking water treatment plant's (DWTP) intake on several sampling dates, low in vivo PC fluorescence, cyanobacterial biovolume, and microcystin concentrations were detected in the plant's untreated water. The reservoir's hydrodynamics appear to have prevented the transport of toxins and cells into the DWTP which would have deteriorated the water quality. The multi-probe readings and toxin analyses provided critical evidence that the DWTP's untreated water was unaffected by the toxic cyanobacterial blooms present in its source water.  相似文献   

15.
2013年6月至2014年5月逐月对洞庭湖水体叶绿素a质量浓度和主要环境因子进行测定,分析洞庭湖水体叶绿素a质量浓度的时空分布特征,探讨洞庭湖水体叶绿素a质量浓度与环境因子的相关性。结果表明,洞庭湖水体叶绿素a质量浓度为0.11~8.62 mg/m~3,年均值为(1.89±1.23)mg/m~3,属贫营养;叶绿素a质量浓度随季节变化明显,总体呈现夏、秋季明显大于冬、春季的规律;在空间上,总体表现为西洞庭湖和东洞庭湖明显大于南洞庭湖。全湖叶绿素a质量浓度与水温、电导率、COD和TP呈极显著正相关,与DO、NH3-N、TN和TN/TP呈极显著负相关,与NO-3-N呈显著负相关,与p H和透明度无显著相关性。全湖TN/TP的年均值为28.5,磷可能是洞庭湖水体浮游植物生长的限制性营养盐。  相似文献   

16.
A fuzzy logic model is developed to estimate pseudo steady state chlorophyll-a concentrations in a very large and deep dam reservoir, namely Keban Dam Reservoir, which is also highly spatial and temporal variable. The estimation power of the developed fuzzy logic model was tested by comparing its performance with that from the classical multiple regression model. The data include chlorophyll-a concentrations in Keban lake as a response variable, as well as several water quality variables such as PO4 phosphorus, NO3 nitrogen, alkalinity, suspended solids concentration, pH, water temperature, electrical conductivity, dissolved oxygen concentration and Secchi depth as independent environmental variables. Because of the complex nature of the studied water body, as well as non-significant functional relationships among the water quality variables to the chlorophyll-a concentration, an initial analysis is conducted to select the most important variables that can be used in estimating the chlorophyll-a concentrations within the studied water body. Following the outcomes from this initial analysis, the fuzzy logic model is developed to estimate the chlorophyll-a concentrations and the advantages of this new model is demonstrated in model fitting over the traditional multiple regression method.  相似文献   

17.
Water Quality Changes in Chini Lake, Pahang, West Malaysia   总被引:1,自引:0,他引:1  
A study of the water quality changes of Chini Lake was conducted for 12 months, which began in May 2004 and ended in April 2005. Fifteen sampling stations were selected representing the open water body in the lake. A total of 14 water quality parameters were measured and Malaysian Department of Environment Water Quality Index (DOE-WQI) was calculated and classified according to the Interim National Water Quality Standard, Malaysia (INWQS). The physical and chemical variables were temperature, dissolved oxygen (DO), conductivity, pH, total dissolved solid (TDS), turbidity, chlorophyll-a, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), ammonia-N, nitrate, phosphate and sulphate. Results show that base on Malaysian WQI, the water in Chini Lake is classified as class II, which is suitable for recreational activities and allows body contact. With respect to the Interim National Water Quality Standard (INWQS), temperature was within the normal range, conductivity, TSS, nitrate, sulphate and TDS are categorized under class I. Parameters for DO, pH, turbidity, BOD, COD and ammonia-N are categorized under class II. Comparison with eutrophic status indicates that chlorophyll-a concentration in the lake was in mesotrophic condition. In general water quality in Chini Lake varied temporally and spatially, and the most affected water quality parameters were TSS, turbidity, chlorophyll-a, sulphate, DO, ammonia-N, pH and conductivity.  相似文献   

18.
This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65?×?103, 6.35?×?103, 3.27?×?103 and 3.60?×?108 CFU g?1 of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.  相似文献   

19.
长湖流域水质时空分布特征及影响因子   总被引:1,自引:1,他引:0  
利用2009—2014年长湖5个水质监测点数据,采用时间序列法分析了长湖水质的时间变化规律,采用相关性分析法,分析了流域水污染的影响因子。结果表明:在时间上,长湖水污染物质量浓度季节变化明显,COD、TN、NH3-N均为7、9月较低,1、3月较高,丰水期水质好于枯水期。入湖地区TP质量浓度7月达最高值,且7月份入湖地区的桥河口、关沮口的NH3-N、TN含量稍高于5月。空间上,西北部入湖地区水质劣于湖心及东南部出湖地区。工业、生活等点源污水,以耕地为主的农业非点源以及天然降水量和径流量是影响水质的主要因素,入湖排污量、降水量和径流量与长湖水质呈显著相关关系(P0.05)。  相似文献   

20.
山仔水库叶绿素a与环境因子的相关分析及富营养化评价   总被引:22,自引:0,他引:22  
依据2003年3~11月对山仔水库的逐月调查和监测数据,分析叶绿素a含量的时空分布情况,探讨叶绿素a与相关环境因子的关系,并应用修正的卡尔森营养状态指数对山仔水库水质进行分析评价。结果表明,山仔水库除了3、10、11月份处于中营养状态,其余月份都处于富营养化状态。叶绿素a具有明显的时空分布特征。日溪进口和山仔水库坝前的叶绿素a含量较高;初夏和秋末出现高峰,叶绿素a含量分别高达211 mg/m^3和93mg/m^3。多元统计分析表明,与山仔水库叶绿素a含量显著相关的因子是水温和溶解氧。生物因子评价表明,山仔水库浮游藻类的种类和数量都达到了富营养化水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号