首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 60 毫秒
1.
The analytical method of famoxadone residue and its dissipation in grape and soil were investigated. Famoxadone (68.75% water-dispersible granule) was applied at two dosages (1.25 and 2.5 g l???1). Soil and grape samples were collected at intervals and analyzed for famoxadone residues. The results showed that the degradation rate of famoxadone in grape and soil were similar, and their dynamics could be described by C?=?1.1738e ???0.0562t with correlation coefficient r?=?0.9044 in grape and C?=?5.6565e ???0.0515t with r?=?0.9620 in soil, respectively. Half-lives were 12.3 and 13.5 days in grape and soil, respectively. The results indicated that at harvest time, the residues of famoxadone in grape were well below the EU’s maximum residue level (2 mg kg???1) and was safe to apply in grape.  相似文献   

2.
Two independent field trials were performed in Guangdong and Hubei, China in 2011 to investigate the dissipation and residue levels of triforine in strawberry and soil. A fast and simple method using gas chromatography with electron capture detector was developed and validated to determine triforine levels in strawberry and soil. The average recovery of triforine in strawberry ranged from 87.46 to 104.32 % with a relative standard deviation (RSD) of 0.72 to 4.54 %; that in soil ranged from 83.82 to 103.01 % with an RSD of 3.89 to 4.36 %. The limit of quantification of the proposed method was 0.01 mg/kg for both strawberry and soil. The results suggest that the triforine dissipation curves followed the first-order kinetic. The half-lives of triforine in strawberry from Guangdong and Hubei were 3.58 and 4.42 days, respectively; those in soil were 3.53 and 4.10 days, respectively. The terminal residues of triforine in strawberry ranged from 0.032 to 0.264 mg/kg at preharvest intervals of 0.5, 1, and 3 days. These values are lower than the maximum residue limit of 1 mg/kg in strawberry set by the Codex Alimentarius Commission.  相似文献   

3.
A simple analytical method was developed to determine the 2,4-D isooctyl ester residue in wheat and soil by gas chromatography coupled with electron capture detector. Using the method, the dissipation and residue of 2,4-D isooctyl ester in wheat field was investigated. The average recoveries of 2,4-D isooctyl ester ranged from 80.1% to 110.0% with relative standard deviations of 2.4% to 16.1%. The pesticide showed a rapid dissipation rate either in wheat seedling or soil, with the half-lives of 1.0 to 3.0 days. The terminal residue results in wheat grain were much lower than the codex MRL (2.0 mg/kg). It could be considered safe to food and environment when using this herbicide for controlling weeds in wheat field.  相似文献   

4.
A rapid and simple HPLC method has been developed for the quantitation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in both wheat and soil samples. Samples were extracted in acidic media and cleaned up by solid-phase extraction with C(18) cartridges before HPLC-DAD detection. The limits of detection and quantification of MCPA were 0.02 ng and 0.01 mg/kg for both wheat and soil. The mean recoveries ranged from 87.1% to 98.2%, and the RSDs ranged from 0.604% to 3.44% for the three spiked levels (0.01, 0.1, 0.5 mg/kg). The proposed method was successfully applied to the analysis of MCPA residues in wheat and soil samples from an experimental field. The dissipation half-lives in soil were calculated to be 3.22 days (Beijing) and 3.10 days (Tianjin), respectively. Direct confirmation of the analytes in real samples was achieved by gas chromatography-mass spectrometry. The results indicated that at harvest time, the residues of MCPA in wheat were well below the maximum residue levels and were safe to apply in wheat.  相似文献   

5.
A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases.  相似文献   

6.
The pre-harvest residue limit (PHRL) of abamectin (abamectin B1a and B1b) in Perilla frutescens leaves grown under greenhouse conditions were investigated using high-performance liquid chromatography with a fluorescence detector. Samples were extracted with acetonitrile. The extract was purified through a solid phase extraction procedure. Then the purified extract was derivatized with trifluoroacetic anhydride and N-methylimidazole to form a strong stable fluorescent derivative of abamectin. Finally, derivatized abamectins were conveyed to the detector via an Atlantis C18 column, with water and methanol as a mobile phase. Calibration curves were linear over the calibration ranges with coefficients of determinants r 2?≥?0.999. The limits of detection and quantification were 0.0033 and 0.01 mg kg?1 for abamectin B1a and B1b, respectively. Recovery was assessed in a control matrix at two different fortification concentrations, with three replicates for each concentration. Good recoveries were obtained for the target analytes and ranged from 82.11 to 93.03 %, with relative standard deviations of less than 8 %. The rate of disappearance of total abamectin on perilla leaves for recommended and double the recommended doses was described as first-order kinetics with a half-life of 0.7 days. Using the PHRL curve, we could predict the residue level of total abamectin to be 0.92 mg kg?1 at 7 days before harvest or 0.26 mg kg?1 at 4 days before harvest, which would be below the provisional MRL designed by the Korea Food and Drug Administration.  相似文献   

7.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

8.
9.
The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg?1) and detection (0.0005 mg kg?1) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001–0.5 mg kg?1) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT50 of S-MET calculated according to the first-order kinetics model was 11.1–14.7 days (soil) and 9.6–13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.  相似文献   

10.
A residue analytical method to detect pyrimethanil in tomatoes and soil was developed by using high-performance liquid chromatography with a diode array detector. The dissipation and residue level of pyrimethanil in tomatoes and soil were also investigated. Results showed that the average recoveries are in the range of 87.2 to 90.0 % with a relative standard difference of 2.22 to 7.61 % in tomatoes and soil. In Guangdong, Shandong, and Yunnan, the half-lives of pyrimethanil in tomatoes were 1.8, 3.6, and 4.2 days and those in soil were 4.0, 3.3, and 3.9 days, respectively. The dissipation rate of pyrimethanil in tomatoes and soil was affected by temperature, precipitation, and soil type. The terminal residue results showed that when pesticide pyrimethanil was used under the experiment design, all the results were far below the available maximum residue limits. Low residues in tomatoes and soil suggest that this pesticide is safe to use under the recommended dosage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号