首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
An energy analysis of sugarcane production in small and large farms was made in Morocco. Total energy expenditures were 64.90 and 47.83 GJ/ha and energy outputs were 100.80 and 85.80 GJ/ha in large and small farms, respectively. The output/input energy ratios were 1.6 and 1.8. The energy intensity lies between 0.7 and 0.8 MJ/kg and is one of the highest among sugarcane producing countries. Irrigation is the most energy consuming operation with about 50% of total energy inputs. Electricity, fertilizers, fuel, and machinery are the main energy inputs. The influence of the different inputs is discussed and practical measures for energy saving and environmental conservation based on energy analysis are discussed.  相似文献   

2.
Microalgae has been considered potential biofuel source from the last decade owing to its versatile perspectives such as excellent capability of CO2 capture and sequestration, water treatment, prolific growth rate and enormous energy content. Thus, energy research on microalgae is being harnessed to mitigate CO2 and meet future energy demands. This study investigated the bioenergy potential of native blue-green microalgae consortium as initial energy research on microalgae in Brunei Darussalam. The local species of microalgae were assembled from rainwater drains, the species were identified as Stigonematales sp. and physical properties were characterised. Sundried biomass with moisture content ranging from 6.5% to 7.37% was measured to be used to determine the net and gross calorific value and they were 7.98 MJ/kg-8.57 MJ/kg and 8.70 MJ/kg-9.45 MJ/kg, respectively. Besides that, the hydrogen content, ash content, volatile matter, and bulk density were also experimented and they were 2.56%-3.15%, 43.6%-36.71%, 57–38%-63.29% and 661.2 kg/m3-673.07 kg/m3, respectively. Apart from experimental values, other physical bioenergy parameters were simulated and they were biomass characteristic index 61,822.29 kg/m3-62,341.3 kg/m3, energy density 5.27 GJ/m3-5.76G J/m3 and fuel value index 86.19–88.54. With these experimental results, microalgae manifested itself a potential source of biofuel feedstock for heat and electricity generation, a key tool to bring down the escalated atmospheric greenhouse gases and an alternation for fossil fuel.  相似文献   

3.
This study aimed to assess Japan’s recent “local production for local consumption” (LPLC) movement, with a special focus on vegetables in the Osaka city region of central Japan. After collecting statistics and spatial data, we conducted a multi-scale analysis of vegetable production and consumption along with the associated energy consumption, using geographical information system software at three spatial scales along the vegetable flow paths: national, regional, and local. Vegetables consumed in the Osaka city region came from prefectures throughout Japan, and we mapped the foodshed within this region at 1-km spatial resolution, as well as the distribution of farmland, farmers’ and other markets. We also conducted a scenario analysis for reduced energy consumption through organic farming and the utilization of abandoned farmland near a city to replace food imports from distant areas. We found that the large majority of vegetables consumed in the Osaka city region currently come from remote prefectures, and that this is associated with a high level of energy consumption. Inside the Osaka city region, peri-urban vegetable farming contributes to regional vegetable provision, resulting in an approximately 70 % production/consumption ratio within an 80-km radius of the urban center; if all of the area of abandoned farmland were restored to production, this ratio would increase to approximately 75 %. Organic farming activities that bring together farmers and urbanites are emerging in many parts of the study area, contributing to increased LPLC. Scenario analysis suggested that a decrease of more than 1 × 106 GJ of energy inputs could be achieved through wider adoption of local organic farming for local consumption and complete utilization of abandoned farmland in the Osaka city region.  相似文献   

4.
Hybrid energy systems are renewable energy system combined in a complementary fashion to ensure dependable power supply at competitive cost. Diesel generators (DGs) are also added here as a back-up source of supply. For remote areas far from a transmission grid, these systems can provide a reliable and cost-effective supply. Addition of DG could instigate environmental pollution in such remote unpolluted areas. In the present work, optimal sizing of hybrid energy system has been attempted for a remote village cluster of Uttarakhand (India) to make available desired power supply at minimum environmental effluence. Hybrid Optimization Model for Electrical Renewable (HOMER) software from National Renewable Energy Laboratory, USA has been employed to attain the objective. The software offered several feasible systems, ranked on the basis of net present cost (NPC). All such systems are further analysed for emissions they have made in the environment. Hence, the optimal system fulfilling the criteria of minimal environmental degradation with sufficiently minimum NPC has been searched for. In the present work, the most appropriate system offered on the basis of NPC is the one which has five wind turbines (10 kW each), one DG (65 kW) and 25 batteries (6 V, 6.94 kW h each). The NPC of the system is $1,252,018, whereas its initial capital cost and levelised cost of energy (COE) are $94,233 and $0.292/kW h, respectively. After further analysis of all the feasible systems on the basis of environmental effluence, the most feasible system explored is the one which has minimal emissions of various pollutants such as carbon dioxide, carbon monoxide, hydrocarbon, particulate matter, sulphur dioxide and nitrous oxide. The system has been obtained on a compromised NPC of $1,270,921 with a capital cost of $148,133 and COE of $0.296/kW h. Components of the system include five wind turbines (10 kW), a 9 kW PV panel and a 65 kW DG along with 30 batteries (6 V, 6.94 kW h each). The system so obtained would prove to be a feasible, optimally sized and sustainable power supply alternative for remote unelectrified hilly rural area.  相似文献   

5.
Efficient use of energy helps to achieve increased production and productivity and contributes to the economy, profitability, and competitiveness of agricultural sustainability of rural communities. Evaluation of wheat and barley production systems in view of energy balance was conducted in Khorasan Razavi Province, Iran. Data were collected by using a face-to-face questionnaire from wheat and barley fields in 2011. Results revealed that total energy input for wheat was 51,040 MJ ha?1 and for barley 44,866; in wheat and barley systems, renewable energy was consumed by 25.43 and 23.53 %, while non-renewable energy was consumed by 74.57 and 76.47 %, respectively. Energy use efficiency, energy productivity, and net energy were 1.7 kg MJ?1, 0.088 kg MJ?1, and 35,987 MJ ha?1 in wheat system and 1.83 kg MJ?1, 0.092 kg MJ?1, and 33,833 MJ ha?1 in barley system, respectively. Energy intensiveness in wheat fields (61.84 MJ $?1) was higher than in barley fields (58.71 MJ $?1). Also, benefit-to-cost ratio in wheat system (1.59) was higher than in barley system (1.35). In general, production in barley fields was more sustainable than wheat production because, in view of ecological indices such as amount of energy use and renewable energy consumption, it was more environment-friendly production.  相似文献   

6.
The aim of this paper was to describe a new energy dependency score methodology and its consequent application to cars sold in twelve regions: Europe (EU-28) and eleven specific countries worldwide (Australia, Brazil, China, India, Japan, Norway, Portugal, Russia, Saudi Arabia, South Africa and USA). This methodology was developed as a potential tool to inform consumers of their choice impact on the country’s economy. This methodology is based on primary energy assessments and origins for each energy pathway associated with a gasoline-, diesel-, natural gas (used for H2 production)- or electricity (balanced with country electricity mix)-powered vehicle. An energy dependency index was attributed to the best-case (100 % endogenous production) and worst-case (0 % endogenous production) scenarios and consequently weighted with vehicle fuel consumption. This enabled obtaining an energy dependency index (10–0). This index could be assigned to an environmental and social index to provide a sustainability index and therefore complement a road vehicle environmental rating system, providing a combined index rating. Internal combustion engine vehicles and hybrid vehicles (that have oil products as energy source) rate the lowest for almost all locations, with the exception of regions that are energy independent (Norway, Saudi Arabia or Russia). Electric vehicles rank higher when comparing to the other technologies analyzed for all locations in this study. The plug-in hybrid electric vehicle shows generally a rank in an intermediate place, except for Japan where it scores lower than all other technologies.  相似文献   

7.
The production of energy crops in Germany is a growing agronomic sector and is expected to occupy a substantial share of farmland in the near future. At the same time, there are concerns that energy crops might cause increased nitrogen pollution of soil water, surface water and groundwater. Therefore, the Federal State of Saxony, Germany, funded a study on potential effects of an intensified cultivation of energy crops. In frame of this study, we used the Web GIS-based model STOFFBILANZ to simulate N leaching from the rooting zone and N loads of surface water for a reference scenario and an energy crop scenario. For the reference scenario, we used data representing the crop cultivation for the year 2005 at municipality level. We found that the total loads for N leaching from the rooting zone of cropland are highest for the loess region (8,067 t year?1), followed by mountainous region (6,797 t year?1) and lowland (5,443 t year?1). However, highest N fluxes in the leachate from rooting zones have been simulated for lowland (40.6 kg ha?1 year?1) and mountainous region (37.1 kg ha?1 year?1), while nitrate concentrations of leachate were highest for the lowland (101.8 mg l?1). In terms of diffuse N input into surface water, the mountainous region is the most important source area (total N load 6,380 t year?1, flux 34.6 kg ha?1 year?1). Retention by in-stream processes accounts for 15 % (3,784 t year?1) of the total N load leaving the study area (25,136 t year?1). In the 2020 energy crop scenario, shares of rape and silage maize (id., ensiled corn) were limited for each municipality to a maximum of 25 and 33 %, respectively. The conversion of grasslands to crop farming was not allowed. Under these conditions, we found slight to substantial reductions of nitrogen loads for leachate from the rooting zone and for surface waters. The simulated reduction depends strongly on local conditions. Only small reductions (ca. 4–8 %) were found for the lowlands and mountainous regions of Saxony, while reductions for the loess region were substantial (ca. 22 %). A major outcome of our study is that the cultivation of energy crops might reduce N loss if certain preconditions are assumed, for example, without conversion of grasslands to crop farming. However, effects might vary widely depending on local conditions.  相似文献   

8.
The cement industry is one of the most energy-intensive industries consuming 4 GJ/ton of cement, i.e. 12–15% of the energy use in total industry. Energy cost accounts for 30% of the total cost of cement production. Seventy-five per cent of this energy is due to the thermal energy for clinker production. It is also found that 35% of this supplied thermal energy is lost in flue gas streams. Most modern kilns use pet coke or coal as their primary fuel. Instead, the municipal waste in landfills offer a cheap source of energy and reduce the environmental effects of dumping solid waste. The calcination and drying processes and the kiln need large quantities of thermal energy. About 40% of the total energy input is lost in the hot flue gases and cooling the stack plus the kiln shell. Hence, it is suitable to use an organic Rankine cycle (ORC) to recover the exhaust energy from the kiln. Alternatively, a 15 MW gas turbine engine combined with a steam turbine could be utilized. It was found that ORC produces 5 MW with a capital cost recovery period of 1.26 years. However, the gas turbine combined system produces 21.45 MW with a maximum recovery period of 2.66 years.  相似文献   

9.
The recent increase in energy costs, driven by a surge in oil prices, has increased world‐wide efforts on the exploitation of renewable/wind energy resources for environment‐friendly sustainable development and to mitigate future energy challenges. Moreover, experience in the wind energy industry has reached high levels in the field of manufacturing and application. This inevitably increases the merits of wind energy exploitation. In order to exploit wind resources, through the establishment of wind power plants, specific attention must be focused on the characteristics of wind and wind machines. The literature indicates that wind‐energy resources are relatively better along coastlines. In the present study, long‐term hourly mean wind speed data for the period 1986–2003, recorded at Dhahran (Eastern Coastal region, Saudi Arabia), has been analysed to examine the wind characteristics including (but not limited to): yearly/monthly/diurnal variations of wind speed, frequency distribution of wind speed, impact of hub‐height/machine‐size on energy production, etc. Data have been checked/validated for completeness. Data analysis indicated that long‐term monthly average wind speeds ranged from 3.8 to 5.8 m/s.

Concurrently, the study determined monthly average daily energy generation from different sizes of commercial wind machines (150, 250, 600 kW, etc.) to assess the impact of wind machine size on energy yield. The study also estimated annual energy production (MWh/year) from wind farms of different capacities (3, 6, 12, 24 MW, etc.) by utilising different commercial wind energy conversion systems (WECS). It was observed that, for a given 6 MW wind farm size, a cluster of 150 kW wind machines (at 50 m hub‐height) yielded about 32% more energy when compared to a cluster of 600 kW wind machines. The study also estimated the cost of wind‐based electricity (COE, US$/kWh) by using different capacities of commercial WECS. It was found that the COE per kWh is 0.045 US$/kWh for 150 kW wind machine (at 50 m hub‐height) whereas COE was 0.039 US$/kWh for 600 kW wind machine (at 50 m hub‐height). The study also dealt with wind turbine characteristics (such as capacity factor and availability factor). These characteristics are important indicators of wind turbine performance evaluation.  相似文献   

10.
A core question in energy economics may be stated as follows: Is the cost–benefit analysis being correctly applied when we encourage investments in renewables, as an alternative to the traditional energy sources? The relationship between energy consumption and economic growth has been extensively treated within economics literature. Yet, literature on the nexus between specific energy sources and GDP is almost inexistent. In this article, we intend to explore the relationship between a certain type of renewable generation technology (solar PV) and GDP. The present and above all the planned energy mix might differ widely from one country to another. Thus, the analysis by source of energy generation becomes a helpful instrument for policy-making. Using a fixed effects panel data methodology and a sample of eighteen EU countries, we find that a 1 % increase in solar PV installed capacity and in electricity production from renewable sources has a positive impact on GDP of 0.0248 and 0.0061 %, respectively. We also conclude that a 1 % growth on greenhouse gas emissions positively affects GDP by 0.3106 %. Further evidence reveals that, in terms of country-specific analysis, Germany, France, Italy and the UK have the most significant estimations for fixed effects. In fact, Germany is a solar PV technology producer, France has a very active nuclear sector, with little pressure for both renewables development and CO2 reductions, Italy had in this period a strong governmental support to this sector, and the UK has a strong connection between the solar PV and the industry sectors.  相似文献   

11.

We investigate agroecosystem energy flows in two Upper Austrian regions, the lowland region Sankt Florian and the prealpine region Grünburg, at five time points between 1830 and 2000. Energetic agroecosystem productivity (energy contents of crops, livestock products, and wood per unit area) is compared to different types of energy inputs, i.e., external inputs from society (labor, industrial inputs, and external biomass inputs) and biomass reused from the local agroecosystem (feed, litter, and seeds). Energy transfers between different compartments of the agroecosystem (agricultural land, forest, and livestock) are also quantified. This allows for delineating an agroecosystem energy transition: In the first stage of this transition, i.e., in the nineteenth century, agroecosystem productivity was low (final produce ranged between 14 and 27 GJ/ha/yr), and local biomass reused made up 97% of total energy inputs in both regions (25–61 GJ/ha/yr). In this period, agroecosystem productivity increase was achieved primarily through more recycling of energy flows within the agroecosystems. In the second stage of the agroecosystem energy transition, i.e., after World War II, external energy inputs increased by factors 2.5 (Sankt Florian) and 5.0 (Grünburg), partly replacing local energy transfers. Final produce per area increased by factors 6.1 (Sankt Florian) and 2.9 (Grünburg). The difference in the resulting energy returns on investment (EROI) owes to regional specialization on cropping versus livestock rearing and to increasing market integration. Our results suggest that sustainable land-use intensification may benefit from some regional specialization harnessing local production potentials based on a mix of local and external inputs.

  相似文献   

12.
The industrial sector is usually the largest economy sector for carbon emissions in many countries, which made it the sector with greatest potential for carbon reduction although the process duration might be very long. Studying the potential of industrial emission reduction has great significance in estimating the carbon emission peak of China on the one hand, and adjusting its strategy in international climate change negotiations. By employing the economic accounting method, this article estimates the emission reduction potential of China’s Industrial sector for the period of 2010–2050. It reveals that, taking 2030 as the year when the emission reaches the peak, the total reduction can be 8.38 billion tons (bts) for the period of 2010–2030, with 3.12 bts from structural reduction while 5.26 bts from intensity reduction. Afterwards, reduction will continue with a total amount of 6.59 bts for the period of 2030–2050, where the structural reduction accounts for 2.47 bts, and intensity reduction 4.115 bts. If both industrial and energy consumption structures are improved during the above period, the reduction potential can be even greater, e.g. the emission peak can arrive five years earlier (in the year of 2025) and the peak value can decline by about 8% as compared to the original estimation. Reviewing the trajectory of emission changes in developed countries indicates that the industry sector can contribute to the overall reduction targets through the dual wheels of structural reduction and intensity reduction, even beyond the emission peak. This article concludes with the following policy suggestions. (1) Our estimation on the emission peak of the industrial sector suggests that China should avoid any commitment earlier than 2030 on the timeline of the overall emission peak; (2) the great potential of industrial emission reduction can improve the situation of China in climate change negotiation, where the intensity reduction can serve as an important policy option. (3) Reduction potential can be further enhanced through technology advancement, which requires furthering of market oriented reforms and improvement of institutional design. (4) To secure the reduction effects of the industrial structure adjustment, the balanced development among different regions should be encouraged in order to avoid the reverse adjustment caused by industrial transferring. (5) International cooperation promoting the application and development of industrial emission reduction technologies, including carbon capture, utilization and storage, should be encouraged.  相似文献   

13.
Today, energy occupies a pivotal position around which all socio-economic activities revolve. No energy means no life, and supply of energy in a cheap, plentiful, long-sustainable and environmentally safe form is a boon for everyone. In the light of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments worldwide are deliberating and making huge strides to promote renewable energy sources such as wind. Integration of wind machines with the diesel plants is pursued widely to reduce dependence on fossil-fuel-produced energy and to reduce the release of carbon gases that cause global climate change. The literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The aim of this study is to analyse wind-speed data of Dhahran (East-Coast, KSA) to assess the economic feasibility of utilising autonomous hybrid wind–diesel power systems to meet the electrical load of 100 typical residential buildings (with annual electrical energy demand of 3512 MWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 600 kW commercial wind machines supplemented with diesel generators. The National Renewable Energy Laboratory's hybrid optimisation model for electric renewables software was employed to perform the techno-economic analysis.

The simulation results indicate that for a hybrid system comprising 600 kW wind capacity together with a 1.0 MW diesel system (two 500 kW units), the wind penetration (at 50 m hub-height, with 0% annual capacity shortage) is 26%. The cost of generating energy (COE, $/kWh) from this hybrid wind–diesel system was found to be 0.070 $/kWh (assuming diesel fuel price of 0.1 $/l). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generator sets (gensets) decreases with an increase in the wind-farm capacity. Concurrently, emphasis has also been placed on wind penetration, un-met load, effect of hub-height on energy production and COE, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost breakdown of wind–diesel systems, COE of different hybrid systems, etc.  相似文献   

14.
Governments in the Lower Mekong Basin (LMB) face decisions that involve trade-offs between the economic benefits from hydropower generation and potentially irreversible negative impacts on the ecosystems that provide livelihoods and food security to the rural poor. As a means of comparing these trade-offs, a sensitivity analysis of the benefit-cost analysis of certain Basin Development Plan (BDP) scenarios was undertaken. By changing some key assumptions in the BDP about discount rates, the value of lost capture fisheries, future aquaculture production in the LMB, and the value of lost ecosystem services from wetlands to reflect the full range of uncertainty, at the extremes, there could be a reversal of the Net Present Value (NPV) estimates of the scenarios from a positive $33 billion to negative $274 billion. This report recommends when dealing with large-scale, complex projects: a more comprehensive, integrated human and natural systems framework and adaptive management approach to LMB planning and development that deals with the entire watershed; a more comprehensive analysis and treatment of risk and uncertainty; a more thorough assessment of the value of direct and indirect ecosystem services; a broader set of scenarios that embody alternative models of development, broader stakeholder participation; and better treatment of the effects of infrastructure construction on local cultures and the poor.  相似文献   

15.
This exploratory study uses model-based cluster analysis to group sixty-one countries based on statistical similarities in terms of happiness, development, income, and carbon emissions. Model-based cluster analysis is appropriate for an initial identification of a pattern that is worthy of further investigation. A key finding is that there may be a Kuznets curve for happiness. The Kuznets curve graphs the proposition that, as an economy develops, economic inequality first increases and then decreases. Similarly, the authors find that clusters of countries at the extremes of the lowest and highest average levels of development and income have the highest self-reported levels of happiness. Clusters of countries in the middle of the development and income spectrum have the comparatively lowest average levels of happiness. Further, carbon emissions are not perfectly associated with happiness. For example, between two clusters with the highest average levels of development, income, and happiness there is a 43 % difference in carbon emissions. A highly developed cluster has roughly the same mean carbon emissions as a cluster with 83 % less income, and the least developed cluster has 93 % of the happiness as the most developed cluster yet 86 % less carbon emissions. Despite limitations of both data and methodology, the overall pattern—that there may be a happiness Kuznets curve and that development, income, and carbon emissions are not associated lockstep with happiness—contributes to the literature on decoupling development from growth in emissions.  相似文献   

16.
17.
This paper compared the life cycle inventory (LCI) obtained from three commercial oil palm biomass composting projects in Malaysia which use the open windrow composting system. The LCI was obtained and calculated based on the functional unit of 1 t of compost produced. The input of the inventory are the feed materials such as empty fruit bunches (EFB) and palm oil mill effluent (POME); and utilities which include electricity generated at palm oil mill and diesel used. Composting 2.0–2.5 t of EFB and 5.0–7.5 t of POME required diesel from 218.7 to 270.2 MJ and electricity from 0 to 6.8 MJ. It is estimated that the composting emitted from 0.01 to 0.02 t CO2eq/tcompost mainly from diesel used to operate machineries. Composting saved 65 % of time required for a complete degradation of POME when compared to ponding system, and 89 % of time required for a complete degradation of EFB compared to mulching. In terms of land required, it required 36 % less land as compared to ponding for POME and 99 % less land as compared to mulching for EFB. Based on the case study, diesel was found to be the main contributor to the environmental impact. There is a potential of upgrading the process to be more economical and environmental friendly. Using electricity as the source of energy has a lower footprint for the composting process. Instead of using raw POME, studies had reported that using treated POME either from anaerobic ponding or digested tank can accelerate the composting process.  相似文献   

18.
Over the last four decades, the Indian government has been investing heavily in watershed development (WSD) programmes that are intended to improve the livelihoods of rural agrarian communities and maintain or improve natural resource condition. Given the massive investment in WSD in India, and the recent shift from micro-scale programmes (<500 ha) to meso-scale (~5000 ha) clusters, robust methodological frameworks are needed to measure and analyse impacts of interventions across landscapes as well as between and within communities. In this paper, the sustainable livelihoods framework is implemented using Bayesian networks (BNs) to develop models of drought resilience and household livelihoods. Analysis of the natural capital component model provides little evidence that watershed development has influenced household resilience to drought and indicators of natural capital, beyond an increased area of irrigation due to greater access to groundwater. BNs have proved a valuable tool for implementing the sustainable livelihoods framework in a retrospective evaluation of implemented WSD programmes. Many of the challenges of evaluating watershed interventions using BNs are the same as for other analytical approaches. These are reliance on retrospective studies, identification and measurement of relevant indicators and isolating intervention impacts from contemporaneous events. The establishment of core biophysical and socio-economic indicators measured through longitudinal household surveys and monitoring programmes will be critical to the success of BNs as an evaluation tool for meso-scale WSD.  相似文献   

19.
Coffee is an important commodity crop in Zimbabwe and many other African countries in terms of its contribution to local and national economies. Coffee production in terms of productivity and quality face severe constraints due to climate change. A study was therefore carried out to understand and quantify the potential impact of climate change on the coffee sector in Zimbabwe using a bioclimatic modelling approach. Current climatically suitable areas were identified and compared with those areas identified to be climatically suitable under projected 2050 climatic conditions. The projected climatic conditions were obtained from climate predictions of two models: CCSM4 model and HadGEM2 model. Coffee production was found to be mostly sensitive to precipitation factors as these were the most important in determining climatic suitability of coffee production in Zimbabwe. The modelling showed that current coffee suitability varies spatially between the four coffee producing districts in Zimbabwe. Chipinge district has the largest area climatically suitable for coffee production followed by Chimanimani district with Mutare district having the smallest. The modelling predicted that there will be a spatial and quantitative change in climatic suitability for coffee production in Zimbabwe by 2050. The greatest changes are projected for Mutare district where over three quarters according to the CCSM4 model and the entire district according to the HadGEM2 model will turn marginal for coffee production. A westward shift in climatic suitability of coffee was observed for Chipinge and Chimanimani district. The models predicted a loss of between 30,000 ha (CCSM4) and 50,000 ha (HadGEM2) in areas climatically suitable for coffee production by 2050 in Zimbabwe. These changes are likely to be driven by changes in the distribution of precipitation received in the coffee areas. The study presents possible adaptation measures that can be adopted by the coffee sector in Zimbabwe and the region to maintain coffee productivity under a changing climate.  相似文献   

20.
Solar and wind energy data available for Oman indicate that these two resources are likely to play an important role in the future energy generation in this country. In this paper, a model is designed to assess wind and solar power cost per kWh of energy produced using different sizes of wind machines and photovoltaic (PV) panels at two sites in Oman, which then can be generalised for other locations in Oman. Hourly values of wind speed and solar radiation recorded for several years are used for these locations. The wind profiles from Thumrait and Masirah island are modelled using the Weibull distribution. The cost of wind-based energy is calculated for both locations using different sizes of turbines. Furthermore, this paper presents a study carried out to investigate the economics of using PV only and PV with battery as an energy fuel saver in two villages. The results show that the PV energy utilisation is an attractive option with an energy cost of the selected PV ranges between 0.128 and 0.144 $/kWh at 7.55% discount rate compared to an operating cost of 0.128–0.558 $\kWh for diesel generation, considering the capital cost of diesel units as sunk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号