首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There exists a high global concern in different nations on environmental sustainability especially at the focal stage of increased economic growth and development process due to high level of environmental degradation and pollution. The major aim of this study was to empirically examine how to minimise carbon emissions (CO2) in Malaysia which are mainly caused by energy production, fossil fuel consumption, population density and economic growth. The study adopted the method of autoregressive distributed lag bound testing approach to analyse the data for the period 1971–2011. The study found that economic growth in Malaysia has a direct relationship with CO2 emissions in both the short run and the long run. Similarly, there is a positive relationship between fossil fuel consumption and CO2 emissions over the same period. Population density was found to have positive impacts on CO2 emissions. Contrarily, the relationship between the activities of energy production and pollution is negative in the long run. The study recommends that a targeted GDP growth rate should be set with the consideration to avoid more environmental pollution. In addition, the positive impact of fossil fuel consumption on the environmental pollution implies that there is a need to make and implement policies that will encourage the use of public transportation system more than private transportations. That is, the unnecessary use of private vehicles should be discouraged in order to reduce the extent of fossil fuel consumption.  相似文献   

2.
Malaysia has made a pledge to reduce voluntarily her carbon dioxide-equivalent (CO2-e) gas emission’s intensity of gross domestic product by up to 40 % based on 2005 levels by 2020. The country is considering implementing economic instruments, among others, to assist the achievement of emission reduction targets while contributing towards the nation’s energy security and sustainable development goals. This paper develops a computable general equilibrium model with explicit energy-emission linkages to appraise the economy-wide and welfare impacts of carbon and energy tax policies to reduce CO2 emissions in Malaysia. Results indicate that the negative macroeconomic impacts of carbon and energy taxes are small relative to the quantum of emission reduction. A Hicksian welfare criterion is utilized to determine the impact of revenue natural shifts in carbon and energy taxes. Revenue neutrality assumptions show that carbon taxation is the best choice when it can provide a double dividend if the generated revenue is used for the purpose of consumption subsidy on household purchases. The notion of the double dividend is confirmed when the change in the consumption structure will result in a welfare improvement, while CO2 emission is decreased effectively. The study also found that carbon tax policy results in greater emission reductions relative to energy taxes, while the use of renewable energy will increase more substantially.  相似文献   

3.
This study investigates the presence of environmental kuznets curve (EKC) for green house gases (GHG) measured by CO2 emission in Malaysia for the period 1970 to 2011. The study also examines the potential of the renewable source of energy to contain GHG. The long-run significant positive coefficient of GDP indicates that the GHG are increasing with economic growth while the insignificant coefficient on GDP square rejects the EKC transition. These results indicate a high GDP level for the EKC turning point for Malaysia. Therefore, it can be stated that only economic growth cannot reverse the environmental degradation in Malaysia. The government should have to come up with some policy measures to achieve CO2 emission reduction targets that Malaysia has pledged to achieve in Paris Submit (2015). The renewable energy production is found to have significant negative effect on CO2 emission. So government should focus on the renewable source of energy production and should frame a special policy for renewable energy production.  相似文献   

4.
Current international discussions on the increasingly critical levels of carbon emissions from the transportation sector commonly attribute the causality chain to urban sprawl growth–private car use–carbon emission. An often assumed development context of this causality chain is that common of developed country urbanization. However, in the particular context of developing country urbanization, urban sprawl and associated workplace–home distanciation may lead to more intensive use by the urban workforce of public mass transportation system, instead of higher dependence on private vehicle travel. Thus, the source of the rise in carbon emission may actually be the public transportation system. Utilizing mixed methods, combining quantitative (origin–destination matrices) and qualitative data gathering and analysis, the authors present a case study in Metro Manila which has been experiencing sprawl and increasing costs and unaffordability of land and housing in the workforce’s vicinity of employment. This, in turn, causes greater distances of daily travel between home and workplace using public transportation system. When the latter is characterized by fuel-inefficient small vehicles with second-hand engines, higher carbon emission results. We argue that the convergence of multiple interacting factors such as urban sprawl, lack of affordability of housing near the centres of employment, high dependence of commuters on public transports, longer distance travel by commuters, and low fuel efficiency of the public utility vehicles primarily causes the increase in CO2 emission from the transport sector. Implications of this case to policy scoping of immediate and long-term state responses for carbon emission mitigation in transportation sector are discussed.  相似文献   

5.
Economic Analysis of CO2 Emission Trends in China   总被引:1,自引:0,他引:1  
Climate change is one of hot spots all around the world. China, the second biggest CO2 emitter, is facing increasingly severe pressure to reduce CO2 emission. The article first describes Kaya Identity and its policy implications. Second, it uses the modified Kaya Identity and makes decomposition without residues on CO2 emission during the period 1971-2005. Taking into account the changes of macroeconomic background, it conducts a detailed analysis in terms of CO2 emission trend from 4th Five Year Plan through 10th Five Year Plan. The decomposition results indicate that economic development and increase in population are major driving forces, and that improvement in energy efficiency contributes to the reduction of CO2 emission, and that decarbonization in primary energy structure is also an important strategic choice. Finally, the article stresses that in CO2 order to realize the binding target of 20% reduction in GDP energy intensity during the 11th Five Year Plan, China should speed up the readjustment of the industrial structure and energetically develop the energy-efficient technologies and clean fuel technology, which will effectively promote the country to reduce CO2 emission and contribute to the mitigation of climate change.  相似文献   

6.
The establishment of a global multi-regional carbon market is considered to be a cost effective approach to facilitate global emission abatement and has been widely concerned.The ongoing planned linkage between the European Union’s carbon market and a new emission trading system in Australia in 2015 would be an important attempt to the practice of building up an international carbon market across different regions.To understand the abatement effect of such a global carbon market and to study its energy and economic impact on different market participants,this article adopts a global dynamic computable general equilibrium model with a detailed representation of the interactions between energy and economic systems.Our model includes 20 economic sectors and 19 regions,and describes in detail 17 energy technologies.Bundled with fossil fuel consumptions,the emission permits are considered to be essential inputs in each of the production and consumption activities in the economic system to simulate global carbon market policies.Carbon emission permits are endogenously set in the model,and can be traded between sectors and regions.Considering the current development of the global carbon market,this study takes 2020 as the study period.Four scenarios(reference scenario,independent carbon market scenario,Europe Union(EUh-Australia scenario,and China-EU-Australia scenario) are designed to evaluate the impact of the global carbon market involving China,the EU,and Australia.We find that the carbon price in the three countries varies a lot,from $32/tCO2 in Australia,to $17.5/tCO2 in the EU,and to $10/tCO2 in China.Though the relative emission reduction(3%) in China is lower than that in the EU(9%) and Australia(18%),the absolute emission reduction in China is far greater than that in the EU and Australia.When China is included in the carbon market,which already includes the EU and Australia,the prevailing global carbon price falls from $22 per ton carbon dioxide(CO2) to $12/tCO2,due to the relatively lower abatement cost in China.Seventy-one percent of the EU’s and eighty-one percent of Australia’s domestic reduction burden would be transferred to China,increasing 0.03%of the EU’s and 0.06%of Australia’s welfare.The emission constraint improves the energy efficiency of China’s industry sector by 1.4%,reduces coal consumption by3.3%,and increases clean energy by 3.5%.  相似文献   

7.
Establishing positive and urgent targets for CO2 reduction and emission peak, and promoting energy conservation and energy structure adjustment are among the strategies to address global climate change and CO2 emissions reduction. They are also means to break through the constraints of domestic resources and environment, and internal needs, to achieve sustainable development. Generally speaking, a country's CO2 emission peak appears after achieving urbanization and industrialization. By then, connotative economic growth will appear, GDP will grow slowly, energy consumption elasticity will decrease, and energy consumption growth will slow down – dependent mainly on new and renewable energies. Fossil fuel consumption will not increase further. When CO2 emission reaches its peak, the annual reduction rate of CO2 intensity of GDP is greater than GDP annual growth rate; and the annual reduction rate of CO2 intensity of energy use is greater than the annual growth rate of energy consumption. Therefore, three important approaches to promotion of CO2 emission peak can be concluded: maintaining reasonable control of GDP growth, strengthening energy conservation to significantly reduce the GDP energy intensity, and optimizing the energy mix to reduce the CO2 intensity of energy use. By around 2030, China will basically have completed its rapid development phase of industrialization and urbanization. Connotative economic growth will appear with the acceleration of industrial structure adjustment. The target of GDP energy intensity will still be to maintain an average annual reduction of 3% or higher. The proportion of non-fossil fuels will reach 20–25%, and the aim will be to maintain an average annual growth rate of 6–8%. The total annual energy demand growth of 1.5% will be satisfied by the newly increased supply of non-fossil fuels. The annual decline in CO2 intensity of GDP will reach 4.5% or higher, which is compatible with an average annual GDP growth rate of approximately 4.5% in order to reach CO2 emission peak. This corresponds to the level of China's potential economic growth. Achieving CO2 emission peak will not impose a rigid constraint on economic development, but rather promote economic development and accelerate the transformation of green, low-carbon development. The CO2 emission peak can be controlled with a cap of 11 billion tons, which means that CO2 emission will increase by less than 50% compared with 2010. The per capita emission peak will be controlled at a level of less than 8 tons, which is lower than the 9.5 tons in the EU and Japan and much lower than the 20 tons in the US, future economic and social development faces many uncertainties in achieving the CO2 emission peak discussed above. It depends on current and future strategies and policies, as well as the pace and strength of economic transformation, innovation, and new energy technologies. If the economic transformation pattern fails to meet expectations, the time required to reach CO2 emission peak would be delayed and the peak level would be higher than expected. Therefore, we need to coordinate thoughts and ideas and deploy these in advance; to highlight the strategic position of low-carbon development and its priorities; to enact mid- to long-term energy development strategies; and to establish and improve a system of laws, regulations, and policies as well as an implementation mechanism for green, low-carbon development. Oriented by positive and urgent CO2 reduction and peak targets, the government would form a reversed mechanism to promote economic transformation and embark on the path of green, low-carbon development as soon as possible.  相似文献   

8.
Cross-cutting government policies that are designed to mitigate CO2 emissions have caused an increased interdependence between government agencies. This leads to fragmentation in the public administration of climate change mitigation. The need for more coordination among government agencies involved in drafting and implementing energy and transportation policies is necessary to create collaborative strategies that can affect energy demand and reduce CO2 emissions. The study aims to use Thailand as a case study to examine and discuss how effective coordination and integration of energy and transport policies and actions in the domain of GHG mitigation in Thailand can be successful. The authors applied a mixed-method information gathering approach combined with data from panel discussions. A thorough literature review guided the evidence, which was reinforced by the expert opinions of 35 industry professionals and governmental officers. Importance-performance analysis was applied as a policy assessment method. The study proposes applying a combination of several factors and conditions regarding institutional aspects of transport and energy sectors into a new greater strategies and actions toward CO2 mitigation. In findings, a combination of instruments and autonomy of sectors is the greatest important and successful opportunity to enable effective coordination and integration of policies for CO2 mitigation. Insightful discussions on integrated approach and recommendations would contribute to collaboratively administrative mechanism.  相似文献   

9.
Through a sensitivity analysis, the trade-off between vehicle range and CO2 emissions is investigated as a function of electric emissions coefficient. Various powertrains were analysed for use in a small crossover sport utility vehicle. Gasoline, gasoline electric hybrid, diesel, fuel cell and battery electric vehicles (BEVs) were considered. Using various upstream fuel pathways and a model for vehicle performance, emissions and energy use were estimated. The hydrogen fuel cell vehicle was found preferable to BEVs under conditions of high CO2 emissions per kW-hr and a high vehicle range requirement. The BEV was preferable for all other conditions.  相似文献   

10.
Amazonia contains more carbon (C) than a decade of global, human-induced CO2 emissions (60–80 billion tons). This C is gradually being released to the atmosphere through deforestation. Projected increases in Amazon deforestation associated with investments in road paving and other types of infra-structure may increase these C emissions. An increase of 25–40% in Amazon deforestation due to projected road paving could counterbalance nearly half of the reductions in C emissions that would be achieved if the Kyoto Protocol were implemented. Forecasted emission increases could be curtailed if development strategies aimed at controlling frontier expansion and creating economic alternatives were implemented. Given ancillary benefits and relative low costs, reducing deforestation in Amazonia and other tropical areas could be an attractive option for climate mitigation. Projects that help contain deforestation and reduce frontier expansion can play an important role in climate change mitigation but currently are not allowed as an abatement strategy under the climate regime. Creating incentives for forest conservation and decreased deforestation can be a unique opportunity for both forest conservation and climate mitigation.  相似文献   

11.
NEWS     
Abstract

Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tce) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tce that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors.  相似文献   

12.
中国城市化进程中的城市道路交通碳排放研究   总被引:7,自引:0,他引:7  
探讨了中国城市化、经济发展、技术进步等与城市道路交通碳排放之间的长期均衡关系与动态作用机制,并对中国城市道路交通碳排放进行了预测和情景分析。结果表明:①城市化率、交通能源强度、城市居民消费水平和人均GDP对城市道路交通碳排放的长期均衡弹性分别为0.93、0.73、0.68、0.44;②城市道路交通碳排放的最大贡献者在中短期内是交通能源强度,长期内是城市化率;③人均GDP增长率的提高,短期内会促使城市道路交通碳排放增长率提高,而长期又有助于使之降低;④中国城市道路交通碳排放持续增长的趋势在相当长时期内不可避免;⑤不同的发展理念和政策与技术的组合,可以使城市道路交通碳排放发生重大变化。基于研究,提出了中国城市道路交通碳减排的政策取向。  相似文献   

13.
Carbon dioxide emissions due to fossil fuel consumption are well recognized as a major contributor to climate change. In the debate on dealing with this threat, expectations are high that agriculture based economies of the developing world can help alleviate this problem. But, the contribution of agricultural operations to these emissions is fairly small. It is the clearing of native ecosystems for agricultural use in the tropics that is the largest non-fossil fuel source of CO2 input to the atmosphere. Our calculation show that the use of fossil energy and the concomitant emission of CO2 in the agricultural operational sector - i.e. the use of farm machinery, irrigation, fertilization and chemical pesticides - amounts to merely 3.9% of the commercial energy use in that part of the world. Of this, 70% is associated with the production and use of chemical fertilizers. In the absence of fertilizer use, the developing world would have converted even more land for cultivation, most of which is completely unsuitable for cultivation. Current expectations are that reforestation in these countries can sequester large quantities of carbon in order to mitigate excessive emissions elsewhere. But, any program that aims to set aside land for the purpose of sequestering carbon must do so without threatening food security in the region. The sole option to liberate the necessary land for carbon sequestration would be the intensification of agricultural production on some of the better lands by increased fertilizer inputs. As our calculations show, the sequestration of carbon far outweighs the emissions that are associated with the production of the extra fertilizer needed. Increasing the fertilizer use in the developing world (without China) by 20%, we calculated an overall net benefit in the carbon budget of between 80 and 206 Mt yr?1 dependent on the carbon sequestration rate assumed for the regrowing forest. In those regions, where current fertilizer use is low, the relative benefits are the highest as responding yield increases are highest and thus more land can be set aside without harming food security. In Sub-Saharan Africa a 20% fertilizer increase, which amounts to 0.14 Mt of extra fertilizer, can tie up somewhere between 8 and 19 Mt of CO2 per year (average: 96 t CO2 per 1 t fertilizer). In the Near East and North Africa with a 20%-increased fertilizer use of 0.4 Mt yr-1 between 10 and 24 Mt of CO2 could be sequestered on the land set aside (40 t CO2 per 1 t fertilizer). In South Asia this is 22–61 Mt CO2 yr?1 with an annual additional input of 2.15 Mt fertilizer (19 t CO2 per 1 t fertilizer). In fact, carbon credits may be the only way for some of the farmers in these regions to afford the costly inputs. Additionally, in regions with already relatively high fertilizer inputs such as in South Asia, an efficient use of the extra fertilizer must be warranted. Nevertheless, the net CO2 benefit through implementation of this measure in the developing world is insignificant compared to the worldwide CO2 output by human activity. Thus, reforestation is only one mitigating measure and not the solution to unconstrained fossil fuel CO2 emissions. Carbon emissions should, therefore, first of all be reduced by the avoidance of deforestation in the developing world and moreover by higher energy efficiency and the use of alternative energy sources.  相似文献   

14.
The present study investigates the energy, environment and growth nexus for a panel of South Asian countries including Bangladesh, India, Pakistan, Sri Lanka and Nepal. The simultaneous analysis of real GDP, energy consumption and CO2 emissions is conducted for the period 1980–2010. Levin panel unit root test and Im test panel unit root both indicate that all the variables are I (1). In addition, Kao’s panel Cointegration test specifies a stable long-term relationship between all these variables. Empirical findings show that a 1 % increase in energy consumption increases output by 0.81 % in long run whereas for the same increase in CO2 emission output falls by 0.17 % in long run. Panel Granger causality tests report short-run causality running from energy consumption to CO2 emissions and from CO2 emissions to GDP.  相似文献   

15.
近年来,电动汽车因其在行驶过程中无任何尾气排放,被各国政府视为推动交通部门清洁、低碳发展的重要途径,主要发达国家纷纷推出了各自的电动汽车发展战略。但是,由于电力属于二次能源,其上游电力生产阶段的能源消费是否清洁将对电动汽车的减排效果产生重要影响。考虑到目前中国绝大部分电力源于煤炭,电动汽车是否真正有益于减排还有待进一步验证。目前一些专家和学者基于传统的过程生命周期评价方法对电动汽车的能源消费、温室气体排放做了一些研究,但研究结果差异较大。为了对电动汽车的减排效果进行更精确的研究,本文采用混合生命周期方法对电动汽车的能源消费、温室气体排放进行了计算。同时,在考虑电动汽车的燃料生命周期、车辆制造生命周期的基础上,将相关配套充电设施建设生命周期纳入到电动汽车的全生命周期系统边界内,以使对电动汽车全生命周期的研究结果更加完整、精确。研究结果显示,纯电动汽车并非是"零排放"的,在燃料周期,虽然纯电动汽车的单位里程能源消费强度较小,约为传统汽油车的94.6%,但以煤为主的高碳电力结构导致目前纯电动汽车燃料周期的单位里程温室气体排放强度约为传统汽油车的1.12倍;车辆周期内,纯电动汽车的能源消费和温室气体排放量也略高于传统汽油车;此外,配套充电设施的建设也将增加纯电动汽车全生命周期的能源消费和温室气体排放量。综合燃料、车辆及充电设备的全生命周期,在当前的电源结构及技术条件下,电动汽车虽然具有较高的能源效率和较好的石油替代效果,但其全生命周期内的煤炭消费较高,导致其温室气体排放量高于传统汽油车,在当前的情况下大规模发展电动汽车并不利于温室气体减排。  相似文献   

16.
大气污染物的源排放是形成灰霾天气的内因,气象条件是形成灰霾天气的外因。本研究通过构建PM_(2.5)浓度的两段式分布滞后模型,结合自然环境因素及经济因素对PM_(2.5)的影响因素进行了综合分析。在第一段模型中构建了PM_(2.5)和大气污染物排放量的分布滞后模型,第二段模型中构建了不同的大气污染源对大气污染物排放量的影响因素模型。大气污染物排放源主要包括工业源、生活源、机动车源、集中式污染治理设施源。在工业源中,工业废气重度污染行业是大气污染物排放主要的贡献者;在生活源中,燃煤消费量对大气污染物排放影响很大,这也是冬季供暖期间PM_(2.5)剧增的原因;在机动车源中,尽管黄标车的保有量仅占汽车保有量的10%左右,但却占据了颗粒物排放量的绝大部分。利用京津冀代表性城市PM_(2.5)日度数据研究得出平均气温、平均风速、日照时数、平均气压、降雨量、平均相对湿度、沙尘暴等因素对PM_(2.5)浓度的负向与正向作用。研究发现,大气污染物排放量对PM_(2.5)浓度具有聚集的滞后效应,当期大气污染物排放量、滞后一期、滞后两期、滞后三期大气污染物对PM_(2.5)浓度具有显著的正向作用,且影响依次递减。构建的大气污染物排放量的污染源影响因素模型揭示一个地区煤炭消费量、工业废气重度污染行业工业增加值、黄标车保有量对该地区大气污染物排放量具有显著影响。本研究对优化能源消费结构和产业结构,减少空气污染物排放提出了对策建议。  相似文献   

17.
The aim of this paper was to describe a new energy dependency score methodology and its consequent application to cars sold in twelve regions: Europe (EU-28) and eleven specific countries worldwide (Australia, Brazil, China, India, Japan, Norway, Portugal, Russia, Saudi Arabia, South Africa and USA). This methodology was developed as a potential tool to inform consumers of their choice impact on the country’s economy. This methodology is based on primary energy assessments and origins for each energy pathway associated with a gasoline-, diesel-, natural gas (used for H2 production)- or electricity (balanced with country electricity mix)-powered vehicle. An energy dependency index was attributed to the best-case (100 % endogenous production) and worst-case (0 % endogenous production) scenarios and consequently weighted with vehicle fuel consumption. This enabled obtaining an energy dependency index (10–0). This index could be assigned to an environmental and social index to provide a sustainability index and therefore complement a road vehicle environmental rating system, providing a combined index rating. Internal combustion engine vehicles and hybrid vehicles (that have oil products as energy source) rate the lowest for almost all locations, with the exception of regions that are energy independent (Norway, Saudi Arabia or Russia). Electric vehicles rank higher when comparing to the other technologies analyzed for all locations in this study. The plug-in hybrid electric vehicle shows generally a rank in an intermediate place, except for Japan where it scores lower than all other technologies.  相似文献   

18.
It is considered that use of hydrogen as an energy source may contribute to environmental improvement and provide an alternative energy system. Moreover, it is anticipated that hydrogen will be in great demand in the near future for use in such vehicles as fuel cell-based cars. Research and development of a number of advanced methods of hydrogen production (OTEC, water photolysis using a semiconductor, a municipal waste gasification—smelting system, etc.) is currently under way. A comparison of different hydrogen-rich fuels in this paper shows that methane is advantageous for hydrogen production from the viewpoint of energy efficiency as measured by thermodynamic analysis. This paper therefore proposes combining existing technology for hydrogen production with an unconventional methane source in order to facilitate the realization of a hydrogen energy system: i.e., this paper proposes combining the process of steam reforming, which is commercialized worldwide, with use of untouched natural gas hydrate (NGH) resources. Gas hydrate deposits, which are distributed worldwide, hold great amounts of methane gas and have hardly been touched. This paper presents the economic parameters of NGH development and discusses the concept of devising useful applications of NGHs, with consideration given to (1) independence from current fossil fuels; (2) energy transport using the hydrate system; (3) CO2 sequestration — replacement of methane hydrate with CO2 hydrate in the submarine layer and (4) improvement of current steam reforming of methane by CO2 reuse and zeolite application. This paper thus proposes a new solution that will make a key contribution to the systematic development of a new sustainable energy structure.  相似文献   

19.
ABSTRACT

Continuously reducing the CO2 intensity of GDP is the core strategy for developing countries to realize the dual targets of economic growth and CO2 emissions reduction. The measures are twofold: one is to strengthen energy saving and decrease energy intensity of GDP and the other is to promote energy structural decarbonization and reduce CO2 intensity of energy consumption. In order to control global temperature rise no more than 2°C, the decrease in CO2 intensity of GDP needs surpass 4% before 2030, but it could be merely about 2% based on the current trend. Therefore, all countries ought to speed up the low-carbon transition in energy and economy. As for China, keeping a continuous decline in CO2 intensity of GDP of 4%–5% will ensure the realization of the NDC objectives, and also promotes the early peaking of CO2 emissions before 2030. China will play a positive leading role in realizing a win-win low-carbon development coordinating sustainable development and climate change mitigation.  相似文献   

20.
Abstract

The traditional evaluation of energy consumption mostly introduces pollutants as a negative economic output into evaluating model, ignoring the configuration relationship among the energy input, pollutants as well as economic output. This paper considers the overall process of energy consumption and constructs an evaluation indication system of energy consumption level combined with endogenous pollutants based on entropytopsis method, then makes empirical research. The results show that China’s energy consumption level presents a fluctuant rise in the premise of emission. Energy consumption level depends on the relationship among energy input, pollutants and economic output. The raise of energy consumption level should not increase economic output and reduce pollutant emission at the expense of environment. Finally, the whole paper puts forward the countermeasures to improve the overall level of energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号