首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
生物传感器在环境监测中的应用   总被引:3,自引:0,他引:3  
介绍了生物传感器在环境监测中的应用,主要分析了酶传感器、微生物传感器、免疫传感器及DNA传感器在环境监测中的作用机理及监测方法,并针对环境中的杀虫剂、爆炸类物质、有毒污染物及水体中的BOD负荷等的监测进行了较详细的论述,对生物传感器的发展方向及前景进行了展望。  相似文献   

2.
介绍了生物传感器在环境监测中的应用 ,主要分析了酶传感器、微生物传感器、免疫传感器及DNA传感器在环境监测中的作用机理及监测方法 ,并针对环境中的杀虫剂、爆炸类物质、有毒污染物及水体中的BOD负荷等的监测进行了较详细的论述 ,对生物传感器的发展方向及前景进行了展望  相似文献   

3.
有机磷农药残留检测技术研究进展   总被引:10,自引:0,他引:10  
综述了近年来有机磷农药残留检测技术的研究进展,其检测方法主要有色谱法、降解酶法、化学发光技术和生物传感技术.详细介绍了几种生物传感器(如酶传感器、微生物传感器、免疫传感器、压电传感器、纳米传感器和液晶型化学传感器)在有机磷农药检测中的应用,并展望了这一领域的发展趋势.  相似文献   

4.
生物电化学是以生物体系的研究及其控制、应用为目的,融合生物学、电化学和化学等多门学科形成的一门新兴学科。综述了生物电化学在生态修复方面的应用及研究进展,介绍了其在盐碱地的修复、环境中抗生素及石油污染物降解、清洁能源产生等方面的应用情况,展望了生物电化学在未来生物传感器等方面的发展前景。  相似文献   

5.
绿色荧光蛋白分子标记在环境微生物学研究中的应用   总被引:9,自引:0,他引:9  
绿色荧光蛋白(green fluorescent protein,GFP)分子标记是现有遗传标记中最简单方便的一种方法,GFP及GFP突变体在微生物降解污染物、生物膜菌群构架、环境生态学和环境检测生物传感器等研究领域取得了很好的应用效果。  相似文献   

6.
王强  宗友健  雷婷  吴俊伟  张萌 《环境工程学报》2021,15(12):4057-4066
目前,微生物燃料电池(microbialfuelcell,MFC)型生物毒性传感器被广泛用于检测重金属、氰化物和抗生素等污染物,但将其应用于检测农药的研究极少.为此,探究了MFC型生物毒性传感器对溴氰菊酯、敌百虫、百菌清、莠去津和烟嘧磺隆5种典型农药的检测性能.实验结果表明:这5种典型农药的响应(产电抑制率)均与其浓度的对数呈良好的线性关系,且溴氰菊酯、敌百虫、百菌清、莠去津和烟嘧磺隆使MFC型生物毒性传感器产电抑制率达到10%的质量浓度分别低至0.016、0.070、0.013、0.005和0.033 mg·L-1;中毒后,MFC型生物毒性传感器的恢复时间随农药浓度的增加而延长,但240 min内均可快速恢复稳定;另外,这5种典型农药所配制的不同混合农药的生物毒性均高于单一农药.以上结果表明,MFC型生物毒性传感器对这5种典型农药的响应灵敏,检出限较低且中毒后恢复速度快,具有快速检测和预警水体农药污染的应用潜力.  相似文献   

7.
生物传感器正处于高度动态发展,伴随着分子生物学、纳米科学及电子信息技术上的突破不断进步。多指标倏逝波荧光免疫传感器作为多指标快速检测仪器可满足环境样品和食品中农药检测的要求,在环境、临床诊断及食品卫生等领域的应用越来越广泛,该类免疫传感器具有能同时检测多种有毒污染物、相对廉价、检测快速和灵敏度高等优点。综述了其基本原理、仪器构造,全面梳理了研究进展,并提出未来研究方向,为多指标同步检测技术的发展提供参考。  相似文献   

8.
铅离子(Pb~(2+))是一种毒性强、危害大的重金属污染物,对其进行及时准确地检测意义重大。对各类环境样品中的Pb~(2+)进行检测的方法很多,其中基于脱氧核酶设计的生物传感器是一种灵敏度高、选择性好的方法。对脱氧核酶进行了介绍,总结了脱氧核酶在Pb~(2+)生物传感器设计中的应用,重点综述了基于RNA剪切型和G-四链体型两种脱氧核酶设计的荧光型、比色型和电化学型Pb~(2+)生物传感器的发展历史以及研究进展,并对将来的研究方向进行了展望。  相似文献   

9.
BOD生物传感器的研制与应用   总被引:1,自引:0,他引:1  
介绍了BOD生物传感器的原理、研制过程以及实际测定。该仪器测定BOD的周期为30min,有较高的精密度和准确度,与稀释法有良好的相关性,可以及时信息反馈,特别适用于污水处理过程中的控制分析以及BOD的快速测定。  相似文献   

10.
应用活性污泥呼吸变化快速检测废水毒性的研究   总被引:2,自引:0,他引:2  
以活性污泥的呼吸代谢为检测指标,采用生物传感器的方法对废水毒性进行试验性的检测。建立了3种简便的废水毒性检测方法,可用于一次性检测,也可用于连续性监测。  相似文献   

11.
This paper reports the construction of the gold/mercaptobenzothiazole/polyaniline/acetylcholinesterase/polyvinylacetate (Au/ MBT/PANI/AChE/PVAc) thick-film biosensor for the determination of certain organophosphate pesticide solutions in selected aqueous organic solvent solutions. The Au/MBT/PANI/AChE/PVAc electrocatalytic biosensor device was constructed by encapsulating acetylcholinesterase (AChE) enzyme in the PANI polymer composite, followed by the coating of poly(vinyl acetate) (PVAc) on top to secure the biosensor film from disintegration in the organic solvents evaluated. The electroactive substrate called acetylthiocholine (ATCh) was employed to provide the movement of electrons in the amperometric biosensor. The voltammetric results have shown that the current shifts more anodically as the Au/MBT/PANI/AChE/PVAc biosensor responded to successive acetylthiocholine (ATCh) substrate addition under anaerobic conditions in 0.1 M phosphate buffer, KCl (pH 7.2) solution and aqueous organic solvent solutions. For the Au/MBT/PANI/AChE/PVAc biosensor, various performance and stability parameters were evaluated. These factors include the optimal enzyme loading, effect of pH, long-term stability of the biosensor, temperature stability of the biosensor, the effect of polar organic solvents, and the effect of non-polar organic solvents on the amperometric behavior of the biosensor. The biosensor was then applied to detect a series of 5 organophosphorous pesticides in aqueous organic solvents and the pesticides studied were parathion-methyl, malathion and chlorpyrifos. The results obtained have shown that the detection limit values for the individual pesticides were 1.332 nM (parathion-methyl), 0.189 nM (malathion), 0.018 nM (chlorpyrifos).  相似文献   

12.
Although the long incubation time of biochemical oxygen demand (BOD7) measurements has been addressed by the use of microbial biosensors, the resulting sensor-BOD values gained from the measurements with specific industrial wastewaters still underestimates the BOD value of such samples. This research aims to provide fast and more accurate BOD measurements in the dairy wastewater samples. Unlike municipal wastewater, wastewater from the dairy industry contains many substrates that are not easily accessible to a majority of microorganisms. Therefore, a bacterial culture, Microbacterium phyllosphaerae, isolated from dairy wastewater was used to construct a semi-specific microbial biosensor. A universal microbial biosensor based on Pseudomonas fluorescens, which has a wide substrate spectrum but is nonspecific to dairy wastewater, was used as a comparison. BOD biosensors were calibrated with OECD synthetic wastewater, and experiments with different synthetic and actual wastewater samples were carried out. Results show that the semi-specific M. phyllosphaerae-based microbial biosensor is more sensitive towards wastewaters that contain milk derivates and butter whey than the P. fluorescens-based biosensor. Although the M. phyllosphaerae biosensor underestimates the BOD7 value of actual dairy wastewaters by 25–32 %, this bacterial culture is more suitable for BOD monitoring in dairy wastewater than P. fluorescens, which underestimated the same samples by 46–61 %.  相似文献   

13.
Despite numerous reviews suggesting that microbial biosensors could be used in many environmental applications, in reality they have failed to be used for which they were designed. In part this is because most of these sensors perform in an aqueous phase and a buffered medium, which is in contrast to the nature of genuine environmental systems. In this study, a range of non-exhaustive extraction techniques (NEETs) were assessed for (i) compatibility with a naphthalene responsive biosensor and (ii) correlation with naphthalene biodegradation. The NEETs removed a portion of the total soil naphthalene in the order of methanol > HPCD > βCD > water. To place the biosensor performance to NEETs in context, a biodegradation experiment was carried out using historically contaminated soils. By coupling the HPCD extraction with the biosensor, it was possible to assess the fraction of the naphthalene capable of undergoing microbial degradation in soil.  相似文献   

14.
Seo J  Kato S  Tatsuma T  Chino S  Takada K  Notsu H 《Chemosphere》2008,72(9):1286-1291
A fungal biosensor plate was applied to assessment of the harmfulness of air polluted by formaldehyde. Alternariaalternata, Eurotiumherbariorum and Aspergilluspenicillioides were used as fungal species. Fungal mycelium length and optical transparency of the biosensor plate were employed as indices of the fungal growth. Formaldehyde in air was detected on the basis of growth inhibition, reflected by suppression of the growth indices. Dynamic range of the measurement was 700-4000 microg m(-3) or broader. Eurotiumherbariorum and Aspergilluspenicillioides were the most suitable fungal species to formaldehyde sensing based on the mycelium length and that based on the transparency, respectively.  相似文献   

15.
A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5alpha (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5alpha (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L(-1), 10 nmol L(-1), and 0.1 nmol L(-1), respectively, with 2h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests.  相似文献   

16.
Biosensors for detection of mercury in contaminated soils   总被引:1,自引:0,他引:1  
Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities.  相似文献   

17.
Environmental pollution with petroleum products such as benzene, toluene, ethylbenzene, and xylenes (BTEX) has garnered increasing awareness because of its serious consequences for human health and the environment. We have constructed toluene bacterial biosensors comprised of two reporter genes, gfp and luxCDABE, characterized by green fluorescence and luminescence, respectively, and compared their abilities to detect bioavailable toluene and related compounds. The bacterial luminescence biosensor allowed faster and more-sensitive detection of toluene; the fluorescence biosensor strain was much more stable and thus more applicable for long-term exposure. Both luminescence and fluorescence biosensors were field-tested to measure the relative bioavailability of BTEX in contaminated groundwater and soil samples. The estimated BTEX concentrations determined by the luminescence and fluorescence bacterial biosensors were closely comparable to each other. Our results demonstrate that both bacterial luminescence and fluorescence biosensors are useful in determining the presence and the bioavailable fractions of BTEX in the environment.  相似文献   

18.
A rapid biological method for the determination of the bioavailability of naphthalene was developed and its value as an alternative to extraction-based chemical approaches demonstrated. Genetically engineered whole-cell biosensors are used to determine bioavailable naphthalene and their responses compared with results from Tenax extraction and chemical analysis. Results show a 1:1 correlation between biosensor results and chemical analyses for naphthalene-contaminated model materials and sediments, but the biosensor assay is much faster. This work demonstrates that biosensor technology can perform as well as standard chemical methods, though with some advantages including the inherent biological relevance of the response, rapid response time, and potential for field deployment. A survey of results from this work and the literature shows that bioavailability under non-equilibrium conditions nonetheless correlates well with Koc or Kd. A rationale is provided wherein chemical resistance is speculated to be operative.  相似文献   

19.
The overall toxicity of soil, and the bioavailability and arsenite from soil were measured with the constructed constitutively luminescent strain Pseudomonas fluorescens OS8 (pNEP01) and with earlier published biosensor strains P. fluorescens OS8 (pTPT11) for mercury and P. fluorescens OS8 (pTPT31) for arsenite, respectively. Both spiked and authentic samples were studied. By combining bacterial assays enabled partial analysis of reasons for toxicity of environmental samples, some of which were highly toxic despite containing little or no heavy metals. The spiked soils were not toxic overall but the method of measuring concentration from water-extractable fraction or from soil-water slurry affected the results significantly. Mercury that was bound to clay even after water extraction was nevertheless found to be bioavailable to a high degree to the biosensor bacteria. Since induction of the luminescence genes takes place intracellularly the bacteria may able to apparently release mercury when in direct contact with clay particle. This type of biomobilisation was not observed with arsenite spiked soils. The same phenomenon was detected in one of the environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号