首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
Lability of polycyclic aromatic hydrocarbons in the rhizosphere   总被引:2,自引:0,他引:2  
Cofield N  Banks MK  Schwab AP 《Chemosphere》2008,70(9):1644-1652
Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response. Change in labile PAHs was a predictor for change in total PAH for 3- and 4-ring compounds but not for the 5- and 6-ring. Decreases in labile PAHs were correlated (r(2)>or=0.80) with toxicity in the bioassays except microbial respiration. PAH(wp) was correlated only with nematode toxicity prior to remediation but with none of the tests after remediation. Total PAHs were not correlated with any of the bioassay tests. Tenax-TA appears to have potential for predicting residual toxicity in remediated soils and is superior to total concentrations for that application.  相似文献   

2.
BACKGROUND, AIM, AND SCOPE: Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of soil environment. Soil ingestion is of increasing concern for assessing health risk from PAH-contaminated soils because soil ingestion is one of the potentially important pathways of exposure to environmental pollutants, particularly relevant for children playing at contaminated sites due to their hand-to-mouth activities. In vitro gastro-intestinal tests imitate the human digestive tract, based on the physiology of humans, generally more simple, less time-consuming, and especially more reproducible than animal tests. This study was conducted to investigate the level of PAH contamination and oral bioaccessibility in surface soils, using physiologically based in vitro gastro-intestinal tests regarding both gastric and small intestinal conditions. MATERIALS AND METHODS: Wastewater-irrigated soils were sampled from the metropolitan areas of Beijing and Tianjin, China, which were highly contaminated with PAHs. Reference soil samples were also collected for comparisons. At each site, four soils were sampled in the upper horizon at the depth of 0-20 cm randomly and were bulked together to form one composite sample. PAH concentrations and origin were investigated and a physiologically based in vitro test was conducted using all analytical grade reagents. Linear regression model was used to assess the relationship between total PAH concentrations in soils and soil organic carbon (SOC). RESULTS: A wide range of total PAH concentrations ranging from 1,304 to 3,369 mug kg(-1) in soils collected from different wastewater-irrigated sites in Tianjin, while ranging from 2,687 to 4,916 mug kg(-1) in soils collected from different wastewater-irrigated sites in Beijing, was detected. In general, total PAH concentrations in soils from Beijing sites were significantly higher than those from Tianjin sites, indicating a dominant contribution from both pyrogenic and petrogenic sources. Results indicated that the oral bioaccessibility of PAHs in small intestinal was significantly higher (from P < 0.05 to P < 0.001) than gastric condition. Similarly, the oral bioaccessibility of PAHs in contaminated sites was significantly higher (from P < or = 0.05 to P < 0.001) than in reference sites. Individual PAH ratios (three to six rings), a more accurate and reliable estimation about the emission sources, were used to distinguish the natural and anthropogenic PAH inputs in the soils. Results indicated that PAHs were both pyrogenic and petrogenic in nature. DISCUSSION: The identification of PAH sources and importance of in vitro test for PAH bioaccessibility were emphasized in this study. The oral bioaccessibility of individual PAHs in soils generally decreased with increasing ring numbers of PAHs in both the gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric conditions to that in the small intestinal condition generally increased with increasing ring numbers, indicating the relatively pronounced effect of bile extract on improving the bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ( ow ) values. Similarly, total PAH concentrations in soils were strongly correlated with SOC, indicating that SOC was the key factor determining the retention of PAHs in soils. CONCLUSIONS: Soils were contaminated with PAHs due to long-term wastewater irrigation. PAHs with two to six rings showed high concentrations with a significant increase over reference soils. Based on the molecular indices, it was suggested that PAHs in soils had both pyrogenic and petrogenic sources. It was also concluded that the oral bioaccessibility of total PAHs in the small intestinal condition was significantly higher than that in the gastric condition. Furthermore, the bioaccessibility of individual PAHs in soils generally decreased with the increasing ring numbers in both the gastric and small intestinal conditions. RECOMMENDATIONS AND PERSPECTIVES: It is suggested that more care should be given while establishing reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-to-mouth activities.  相似文献   

3.

Introduction  

To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAH) were analysed in 23 soil samples (0–10 cm layer) from the Swiss soil monitoring network (NABO) together with total organic carbon (TOC) and black carbon (BC) concentration, as well as some PAH source diagnostic ratios and molecular markers. The concentrations of the sum of 16 EPA priority PAHs ranged from 50 to 619 μg/kg dw. Concentrations increased from arable, permanent and pasture grassland, forest, to urban soils and were 21–89% lower than median numbers reported in the literature for similar Swiss and European soils. NABO soils contained BC in concentrations from 0.4 to 1.8 mg/g dw, except for two sites with markedly higher levels. These numbers corresponded to 1–6% of TOC and were comparable to the limited published BC data in soil and sediments obtained with comparable analytical methods. The various PAH ratios and molecular markers pointed to a domination of pyrogenically formed PAHs in Swiss soils. In concert, the gathered data suggest the following major findings: (1) gas phase PAHs (naphthalene to fluorene) were long-range transported, cold-condensated at higher altitudes, and approaching equilibrium with soil organic matter (OM); (2) (partially) particle-bound PAHs (phenanthrene to benzo[ghi]perylene) were mostly deposited regionally in urban areas, and not equilibrated with soil OM; (3) Diesel combustion appeared to be a major emission source of PAH and BC in urban areas; and (4) wood combustion might have contributed significantly to PAH burdens in some soils of remote/alpine (forest) sites.  相似文献   

5.
Spatial and temporal variation in the atmospheric deposition of PAHs to soil was examined by deploying experimental soils for approximately 165 days and conducting a survey of forest soils at several sites along an urban-rural transect extending from downtown Toronto to approximately 80 km north of the city. PAH concentrations decreased with distance from the urban centre-by a factor of 2 and 60 for the experimental and forest soils respectively. The large gradient for the forest soils is generally consistent with air concentrations of PAHs measured using high volume and passive air samplers. The smaller gradient for the experimental soils was due to kinetic limitations of PAH accumulation and the relatively short deployment period of approximately 165 days. Mean effective deposition velocities (gas+particle) for the full range of PAHs for the experimental soils at the urban, suburban, and the rural sites were 2, 31 and 26 cm s(-1), respectively. These were incorporated into a dynamic model that was used to assess the long-term uptake of PAHs in forest soils. Model results indicate that lower molecular weight PAHs may achieve equilibrium and become involved in soil-air exchange whereas higher molecular weight PAHs are accumulated for much longer time periods.  相似文献   

6.
As an important human exposure pathway of contaminants, soil ingestion is of increasing concern for assessing health risk from polycyclic aromatic hydrocarbons (PAHs) in soils. A wide range of total PAH concentrations ranging from 0.112 microg g(-1) to 27.8 microg g(-1) in soils collected from different public sites, including gas stations, roadsides, bus stops, a kindergarten, primary and middle schools, a university and residential area, was detected. In general, total PAHs concentrations in soils from traffic areas were significantly higher than that from the other sites, indicating a dominant contribution from motor vehicles. Physiologically based in vitro tests were used to evaluate the oral bioaccessibility of PAHs in surface soil under different land uses in Beijing regarding both gastric and small intestinal conditions. It was found that the oral bioaccessibility of total PAHs in small intestinal condition, ranging from 9.2% to 60.5% of total PAHs in soil, was significantly higher than gastric condition, ranging from 3.9% to 54.9%. The bioaccessibility of individual PAHs in soils generally decreased with the increasing ring number of PAHs in both gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric condition to that in small intestinal condition, generally increased with increasing ring number, indicating the relatively pronounced effect of bile extract on improving bioaccessibility of PAHs with relatively high ring numbers characterized by their high K(ow) values. The observation that bile extract at a level higher than critical micelle concentration could reduce the surface tension of digestive juice substantially, which may cause PAHs to be available for intestinal absorption, calls for more careful establishment of reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-mouth activities.  相似文献   

7.
Speciation and mobility of cadmium in straw and wood combustion fly ash   总被引:3,自引:0,他引:3  
Two fly ashes from biomass combustion have been analysed regarding cadmium speciation and mobility. A fly ash from straw combustion contained 10 mg Cd/kg dry matter, and around 50% of the cadmium was leachable in water. The possible main speciation of cadmium in this fly ash was CdCl2. When adding this fly ash to agricultural soil a threat for groundwater contamination and plant uptake is existing. A fly ash from wood chip combustion had 28.6 mg Cd/kg dry matter. In this fly ash, the cadmium was bound more heavily, with only small amounts of cadmium leached in mild extractants. A possible speciation of cadmium in this fly ash was as oxide or as CdSiO3. Long-term effects and accumulation of cadmium could be a problem when adding this fly ash to agricultural or forest soils.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in soil at former industrial areas; and in Sweden, some of the most contaminated sites are being remediated. Generic guideline values for soil use after so-called successful remediation actions of PAH-contaminated soil are based on the 16 EPA priority pollutants, which only constitute a small part of the complex cocktail of toxicants in many contaminated soils. The aim of the study was to elucidate if the actual toxicological risks of soil samples from successful remediation projects could be reflected by chemical determination of these PAHs. We compared chemical analysis (GC-MS) and bioassay analysis (H4IIE-luc) of a number of remediated PAH-contaminated soils. The H4IIE-luc bioassay is an aryl hydrocarbon (Ah) receptor-based assay that detects compounds that activate the Ah receptor, one important mechanism for PAH toxicity. Comparison of the results showed that the bioassay-determined toxicity in the remediated soil samples could only be explained to a minor extent by the concentrations of the 16 priority PAHs. The current risk assessment method for PAH-contaminated soil in use in Sweden along with other countries, based on chemical analysis of selected PAHs, is missing toxicologically relevant PAHs and other similar substances. It is therefore reasonable to include bioassays in risk assessment and in the classification of remediated PAH-contaminated soils. This could minimise environmental and human health risks and enable greater safety in subsequent reuse of remediated soils.  相似文献   

9.
The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.  相似文献   

10.
Wang Z  Chen J  Qiao X  Yang P  Tian F  Huang L 《Chemosphere》2007,68(5):965-971
To estimate the distribution and sources of soil polycyclic aromatic hydrocarbons (PAHs) in metropolitan and adjacent areas, soil samples were collected from urban, suburban and rural locations of Dalian, China, and concentrations of 14 PAHs were determined. The spatial PAH profiles were site-specific and determined by the sources close to the sampling sites. PAH concentrations decreased significantly along the urban-suburban-rural transect. The gradient implied that the fractionation effect influenced PAH distribution. Bivariate plots of selected diagnostic ratios showed general trends of co-variation and allowed to distinguish samples taken from different areas. An improved method, factor analysis (FA) with nonnegative constrains, was used to determine the primary sources and contributions of PAHs in soils. The FA model showed traffic average (74%) and coal related residential emission (26%) were two primary sources to Dalian soils. In addition, the FA model provided reasonable explanations for PAH contributions in soils from different sites. The results suggest that FA with nonnegative constraints is a promising tool for source apportionment of PAHs in soils.  相似文献   

11.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

12.
The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 μg/kg). The experiments included radiorespirometry determinations of biodegradation with 14C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added 14C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils.  相似文献   

13.
Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China   总被引:6,自引:0,他引:6  
Yin CQ  Jiang X  Yang XL  Bian YR  Wang F 《Chemosphere》2008,73(3):389-394
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in vegetable soils from five vegetable fields (including: Liuhe, Xixia, Pukou, Jianye and Yuhua districts) in Nanjing outskirt were investigated with high performance liquid chromatography (HPLC) equipped with fluorescence detector. The total concentrations of 15 priority PAHs in 126 soil samples ranged from 21.91 to 533.84ngg(-1) dry weight, and the sum of seven carcinogenic PAHs concentrations varied from 1.48 to 236.19ngg(-1) dry weight. Statistical analysis of the PAHs concentrations showed that the highest PAHs concentration was observed in Liuhe, and the lowest PAHs concentrations were found in Xixia among the five districts. The ratios of fluoranthene to sum of fluoranthene and pyrene concentrations (Flt/(Flt+Pyr)) were more than 0.5 in 99% of vegetable soil samples, showing that the PAHs in soils were generally derived from straw and coal combustion sources. The results from principal component analysis (PCA) further indicated that extensive combustion activities affected the PAHs distribution in Nanjing vegetable soils.  相似文献   

14.
Chen L  Ran Y  Xing B  Mai B  He J  Wei X  Fu J  Sheng G 《Chemosphere》2005,60(7):879-890
We investigated contents, distribution and possible sources of PAHs and organochlorine pesticides (Ops) in 43 surface and subsurface soils around the urban Guangzhou where variable kinds of vegetables are grown. The results indicate that the contents of PAHs (16 US EPA priority PAHs) range from 42 to 3077 microg/kg and the pollution extent is classified as a moderate level in comparison with other investigations and soil quality standards. The ratios of methylphenanthrenes to phenanthrene(MP/P), anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[ghi]perylene (In/In+BP) suggest that the sources of PAHs in the soil samples are mixed with a dominant contribution from petroleum and combustion of fossil fuel. The correlation analysis shows that the PAHs contents are significantly related to total organic carbon contents (TOC) (R2=0.75) and black carbon contents (BC) (R2=0.62) in the soil samples. Dichlorodiphenyltrichloroethane and metabolites (DDTs) and hexachlorocyclohexanes and metabolites (HCHs) account largely for the contaminants of OPs. The concentrations of DDTs range from 3.58 to 831 microg/kg and the ratios for DDT/(DDD+DDE) are higher than 2 in some soil samples, suggesting that DDT contamination still exists and may be caused by its persistence in soils and/or impurity in the pesticide dicofol. The concentrations of HCHs are 0.19-42.3 microg/kg.  相似文献   

15.
As(V) retention capacity is determined by means of adsorption/desorption trials performed for coarse and fine ground mussel shell, forest and vineyard soils with or without fine shell, pine wood ash, oak wood ash, pine sawdust and slate-processing fines. Pine ash shows the highest arsenic retention potential (with >97 % adsorption and ≤1 % desorption), followed by shell-amended forest soil (adsorption between 96 and 92 %), by un-amended forest soil (adsorption between 98 and 86 %) and by the amended vineyard soil (adsorption between 92 and 75 %). Sawdust is the material with the lowest arsenic retention capacity in most cases, with un-amended vineyard soil also showing poor results. In the case of oak ash, As(V) percentage adsorption becomes higher with increasing added arsenic concentrations, while this increase in added arsenic causes lower percentage adsorption in the case of slate fines. Regarding adsorption ability, As(V) adsorption data were fitted to Freundlich and Langmuir models, showing good fitting, with pine ash and shell-amended forest soil having the highest K F values. In view of that, mussel shell amendment would be useful to increase arsenic retention on forest and vineyard soils, while pine ash could be used to retain arsenic even from wastewaters.  相似文献   

16.
Zohair A  Salim AB  Soyibo AA  Beck AJ 《Chemosphere》2006,63(4):541-553
The residues of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in soils from organic farms and their uptake by four varieties of organic-produced potatoes and three varieties of organic carrots from England were investigated. Samples of the soils, crop peels and cores were all Soxhlet-extracted in triplicate, cleaned up by open-column chromatography and analysed by a multi-residue analytical method using gas chromatography with mass selective detection. The concentrations of PAHs, PCBs and OCPs in soils from organic farms ranged from 590+/-43 to 2301+/-146 microg/kg, 3.56+/-0.73 to 9.61+/-1.98 microg/kg and 52.2+/-4.9 to 478+/-111 microg/kg, respectively. Uptake by different crop varieties were 8.42+/-0.93 to 40.1+/-4.9 microg/kg sigmaPAHs, 0.83+/-0.19 to 2.68+/-0.94 microg/kg sigmaPCBs and 8.09+/-0.83 to 133+/-27 microg/kg sigmaOCPs. Residue uptake from soils depended on plant variety; Desiree potato and Nairobi carrot varieties were more susceptible to PAH contamination. Likewise, uptake of PCBs and OCPs depended on potato variety. There were significant positive correlations between the PCB and OCP concentrations (P<0.05) in soils and carrots but no significant correlation was found between the concentrations of any contaminants in soils and potatoes. Peeling carrots and potatoes was found to remove 52-100% of the contaminant residues depending on crop variety and the properties of the contaminants. Soil-crop bioconcentration factors (BCFs) decreased with increasing logK(ow) for PAHs up to about 4.5 and for PCBs up to about 6.5, above which no changes were discernible for either class of contaminants. No relationship was observed between soil-crop BCFs and logK(ow) for OCPs, most likely because their concentrations were low and variable.  相似文献   

17.
Organic pollutants such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polycyclic aromatic hydrocarbons (PAHs), as well as some metals are periodically monitored in soil and vegetation samples collected in Tarragona County (Spain). We here report the temporal trends of the concentrations of the above pollutants between the initial survey (2002) and that recently (2009) performed. The area under evaluation was divided into 4 sections (chemical, petrochemical, urban/residential and unpolluted). In general terms, urban soils presented the highest concentrations of PCDD/Fs, PCNs and PAHs, confirming that traffic is a very important emission source of these pollutants. In addition, substantially higher levels of PAHs and some metals were found in vegetation samples from the petrochemical complex. The assessment of health risks of these contaminants indicated that the current concentrations of micropollutants did not mean additional non-carcinogenic or cancer risks for the population living in the zone.  相似文献   

18.
Yang Y  Ligouis B  Pies C  Achten C  Hofmann T 《Chemosphere》2008,71(11):2158-2167
Organic petrographic analysis was applied to provide direct information on carbonaceous geosorbents for PAHs in river floodplain soils. The anthropogenic OM group (primarily coal and coal-derived particles) displayed large volume amounts for all the soil samples. Distinct PAH concentrations with similar PAH distribution patterns were determined in grain size and density fractions for each sample. Two-ring PAHs had stronger correlation to organic carbon (OC) than black carbon (BC) contents, while heavier PAHs showed correlation to BC, rather than OC. In this study, we combined grain size and density separation, PAH determinations, TOC and BC measurements, and organic petrographic identification, and concluded that two-ring PAHs in soils were associated to coal particles. Other heavier PAHs could be more controlled by black carbon (BC), which were mostly coal-derived particles from former coal mining and coal industrial activity.  相似文献   

19.
Staples CA 《Chemosphere》2001,43(3):339-346
Semipermeable membrane devices containing a neutral lipid triolein (triolein-SPMD) and conventional dichloromethane extraction were used to monitor the presence and concentrations of priority organic pollutants in a sewage treatment process in Beijing, China. Both samples gave similar information on the presence of target PCB congeners, PAHs, Organochlorine pesticides and substituted benzenes in sewage at all sites. After 20 days' sampling, the concentrations of contaminants in triolein of SPMD were much higher than those in dichloromethane extracts, which resulted in easier analysis, improved the detection limits, and increased the accuracy. Previous field mean sampling rates for SPMD were used to estimate concentrations of PCB congeners in sewage, which compared to their determined concentrations by dichloromethane extraction. The consistency and superiority of SPMD technology were proved for the detection of priority organic contaminants from sewage. Lower removal rates for PCB congeners and PAHs coincided with the persistence of them in environment. More attention should be paid to urban sewage treatment process adopting activated-sludge method, where priority organic pollutants might not be removed, even present higher concentrations after treatment.  相似文献   

20.
Distributions and concentrations of PAHs in Hong Kong soils   总被引:19,自引:0,他引:19  
Surface soil (0-10 cm) samples from 53 sampling sites including rural and urban areas of Hong Kong were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations were in the range of 7.0-410 microg kg(-1) (dry wt), with higher concentrations in urban soils than that in rural soils. The three predominant PAHs were Fluoranthene, Naphthalene and Pyrene in rural soils, while Fluoranthene, Naphthalene and Benzo(b + k)fluoranthene dominated the PAHs of urban soils. The values of PAHs isomer indicated that biomass burning might be the major origin of PAHs in rural soils, but vehicular emission around the heavy traffic roads might contribute to the soil PAHs in urban areas. A cluster analysis was performed and grouped the detectable PAHs under 4 clusters, which could be indicative of the PAHs with different origins and PAHs affected by soil organic carbon contents respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号