首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption of imidazolium-based ionic liquids to aquatic sediments   总被引:1,自引:0,他引:1  
Beaulieu JJ  Tank JL  Kopacz M 《Chemosphere》2008,70(7):1320-1328
Ionic liquids (ILs) have received much attention as "green" alternatives to traditional solvents because they do not evaporate, eliminating concerns over fugitive emissions. However, if ionic liquids are used in industrial applications, they may enter aquatic systems via effluent, and their fate and transport may be influenced by sorption to sediments. In this study, we conducted batch mixing experiments with four alkylmethylimidizolium-based ILs and four types of aquatic sediments to asses the capacity for natural aquatic sediments to remove these chemicals from the water column. The concentration isotherms were non linear with point estimates of the distribution coefficient (K(d)) decreasing with increasing concentration. Apparent distribution coefficients ranged from 7.9 to 95.7l kg(-1) at an initial concentration of 0.5mM and were positively related to sediment organic matter (SOM) content. These K(d) values indicate that the ILs did not sorb strongly to the tested sediments. Increased alkyl chain length did not lead to increased sorption suggesting that hydrophobic interactions were not the most important sorption mechanism. We conclude that aquatic sediments have a limited capacity to sorb alkylmethylimidazolium ILs and that the transport of these contaminants in aquatic systems will not be strongly attenuated by sediments.  相似文献   

2.
In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50–90 °C), catalyst load (10–50 mg L?1 Fe3+), initial IL concentration (100–2000 mg L?1), and hydrogen peroxide dose (10–200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe3+]0 = 50 mg L?1; [H2O2]0 = 100% of the stoichiometric amount), the complete removal of [C4mim]Cl (1000 mg L?1) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe3+ amount and H2O2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol?1. The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.  相似文献   

3.
采用纳米TiO2光催化与生物降解相结合的方法,考察了3种1,3-二烷基咪唑类氯型离子液体的降解过程,并用HPLC-MS方法鉴定了光催化降解的碎片和可能的结构。结果表明,在相同条件下3,种离子液体光催化降解的速率次序为1-丁基-3-甲基咪唑氯盐(BmimCl)〉1-己基-3-甲基咪唑氯盐(HmimCl)≈1-辛基3-甲基咪唑氯盐(OmimCl)。BmimCl的光催化降解曲线符合一级动力学方程,最佳催化剂用量为0.5 g/L。HPLC-MS分析表明,光催化降解是咪唑开环氧化的过程,生成众多部分氧化碎片。离子液体水溶液的光催化预处理有利于提高其后续的活性污泥生物降解性能。  相似文献   

4.
Wang H  Malhotra SV  Francis AJ 《Chemosphere》2011,82(11):1597-1603
We investigated the effects on the growth of the anaerobic bacterium, Clostridium sp., of the ionic liquid, 1-methoxyethyl-3-methyl imidazolium [MOEMIM]+, derived from imidazolium cation and paired with one of a variety of counter-ions, viz., tetrafluoroborate [BF4]-, hexafluorophosphate [PF6]-, trifluoroacetate [CF3COO]-, bis(trifluoromethane)sulfonamide [Tf2N]-, methane sulfonate [OMS], and 1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF4]. These anions, in association with [MOEMIM]+ lowered the growth rate of the bacterium, showing the following trend: [Tf2N]- ≧ [PF6]- > [BF4]- > [CF3COO]- > [OMS]. Anions incorporating fluorine were more toxic than those without it, and their toxicity rose with an increase in the number of fluorine atoms. Also, [MOEMIM]+[BF4]- was less toxic than [BMIM]+[BF4]-, probably due to the presence of a methoxyethyl functional group integrated in the cation side chain.  相似文献   

5.
以5种不同结构的咪唑基离子液体为电沉积溶液的添加剂,采用电沉积法制备了改性钛基PbO2电极。通过扫描电子显微镜(SEM)、X射线衍射(XRD)对电极表面形貌、晶体结构进行表征。以苯酚为电催化目标降解物,对不同电极氧化去除苯酚及COD的活性进行考察比较;同时,以水杨酸为捕捉剂,通过高效液相色谱(HPLC)分析技术对不同电极体系中羟自由基(·OH)的生成量进行检测。结果表明,阳离子烷基支链长度及阴离子的改变均会对PbO2电极的表面形貌、结晶取向及电催化活性产生一定影响,且后者的影响作用较前者更为突出。[Emim]Br和[Emim]PF6改性电极的电催化活性比较相近,均明显低于[Emim]BF4改性电极。固定阴离子为BF4-,3种不同烷基支链长度离子液体对PbO2电极活性的改进效果顺序为[Bmim]BF4 > [Emim]BF4 > [Hmim]BF4。此外,不同改性电极对苯酚废水COD去除率的高低与·OH的生成量多少一致,表明苯酚的电化学氧化降解主要是由·OH间接氧化引起的。  相似文献   

6.
This study investigates the influence of the two different clay minerals kaolinite and smectite as well as of organic matter on the cation sorption and desorption behaviour of three imidazolium based ionic liquids -1-butyl-3-methyl-imidazolium tetrafluoroborate (IM14 BF(4)), 1-methyl-3-octyl-imidazolium tetrafluoroborate (IM18 BF(4)) and 1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide (IM14 (CF(3)SO(2))(2)N) - in soil. The German standard soil Lufa 2.2 - a natural soil classified as a loamy sand - was the basis substrate for the different soil compositions and also served as a reference soil. The addition of organic matter and clays increases the sorption of the substances and in particular smectite had striking effects on the sorption capacity for all three ionic liquids indicating that ionic interactions play an important role for sorption and desorption processes of ionic liquids in soil. One exception was for kaolinite-containing soils and the IM14 cation: with (CF(3)SO(2))(2)N(-) as an anion the sorption was identical at either 10 wt% or 15 wt% clay content, and with BF(4)(-) sorption was even lower at 15 wt% kaolinite than at 10 wt%. Desorption was weak for IM18 BF(4), presumably owing to the longer alkyl side chain. With regard to the influence of kaolinite on desorption, the same pattern was observed as it was found for the sorption of IM14 BF(4) and IM14 (CF(3)SO(2))(2)N.  相似文献   

7.
By using Caenorhabditis elegans (C. elegans) as a model animal, the present work is aimed to evaluate the acute toxicity of imidazolium-based bromide Ionic Liquids (ILs), and to elucidate the underlying mechanisms involved. Firstly, 24-h median lethal concentration (LC50) for eight ILs with different alkyl chain lengths and one or two methyl groups in the imidazolium ring were determined to be in a range of 0.09–6.64 mg mL−1. Four ILs were selected to investigate the toxic mechanisms. Mortality, levels of reactive oxygen species (ROS), lipofuscin accumulation and expression of superoxide dismutase 3 in C. elegans were determined after exposed to ILs at sub-lethal concentrations for 12 h. A significant increase in the levels of these biomarkers was observed in accordance with the results of 12-h lethality assay. The addition of 0.5% dimethyl sulfoxide, which acts as a radical scavenger, remarkably rescued the lethality of C. elegans and significantly decreased the ROS level in C. elegans. Our results suggest that ROS play an important role in IL-induced toxicity in C. elegans.  相似文献   

8.
Study of sorption kinetics of some ionic liquids on different soil types   总被引:1,自引:0,他引:1  
In the present contribution sorption kinetics experiments under static conditions were utilized in three selected ionic liquids cations (1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium chlorides) study with five type of soil, differing in total organic carbon (TOC) content. The experimental results indicate the sorption capacity growth with increase in TOC content and hydrophobicity of ionic liquid cation. The obtained kinetic sorption parameters as well as distribution coefficients (Kd) were used to estimate the sorption properties of the soil types towards the ionic liquids in question. The Gibbs free energy values indicate that ionic liquid cations sorption on soils could be generally considered as a physical adsorption with exothermic effect. But the values of −dG for studied cations sorption on soil with very high of TOC content in soil (45%) may testify to nature of chemical adsorption. Sorption of the analyzed compounds occurs probably by means of hydrogen bonds, electrostatic and π  π interaction with the organic matter and the clay minerals of the soils.  相似文献   

9.
Cyclodextrins, especially random methylated betaCD (RAMEB) and hydroxypropyl betaCD (HPbetaCD), are becoming common enhancing additives in the bioremediation of soils formerly contaminated by hydrocarbons and/or other poorly bioavailable organic pollutants. Therefore, their degradation in the soil, particularly the most persistent RAMEB, has been of great concern. Like oil contaminants, these additives should be biodegradable via an environmentally safe technology. Hence, in this paper, the biodegradability of eight different cyclodextrins (CDs) in four different soils was examined under various treatment conditions in laboratory and pilot scale field experiments. This paper is the first report on the potential biological fate of CDs studied under a large variety of environmental conditions and in different soil ecosystems. Data on the potential relationship between CD biodegradation and the biological removal of hydrocarbons in the CD-amended contaminated soils are also given. All CDs were found to be more or less biodegradable; even the most persistent RAMEB was depleted from soils under favourable conditions. In the field experiments, the depletion of RAMEB to about 40% of its initial level was observed for a period of 2 years in hydrocarbon-contaminated soils of high organic matter and cell concentration.  相似文献   

10.
Biodegradation of nonylphenol in soil   总被引:8,自引:0,他引:8  
Chang BV  Chiang BW  Yuan SY 《Chemosphere》2007,66(10):1857-1862
We investigated the effects of various factors (brij 30, brij 35, yeast extract, hydrogen peroxide and compost) on the aerobic degradation of nonylphenol (NP) in soil and characterized the structure of the microbial community in that soil. Residues of NP were measured using gas chromatography-mass spectrometry (GC-MS) and a change of microbial communities was demonstrated using denaturing gradient gel electrophoresis (DGGE). The results showed that Taichung sandy clay loam had higher NP degradation rate than Kaoshiung silty clay. The addition of compost, yeast extract (0.5 mg/l), brij 30 (55 microM), or brij 35 (91 microM) enhanced NP degradation, while the addition of hydrogen peroxide (1.0 mg/l) inhibited its degradation. We also found that the addition of various substrates changed the microbial community in the soils. Cytophaga sp. and Ochrobactrum sp. were constantly dominant bacteria under various conditions in the soil.  相似文献   

11.
We investigated the potential of an aerobic polycyclic aromatic hydrocarbon (PAH)-adapted consortium to degrade phenanthrene in soil. Optimal degradation conditions were determined as pH7.0 and 30 degrees C with a water content of 100% wt soil/wt water (w/w). At a concentration of 5 microg/g, phenanthrene degradation (k1) was measured at 0.0269 l/hr with a half-life (t(1/2)) of 25.8 hrs. Our results show that the higher the phenanthrene concentration, the slower the degradation rates. Phenanthrene degradation was enhanced by treatment with yeast extract, glucose, or pyruvate, but was not significantly improved by the addition of acetate. Degradation was delayed by the addition of either compost or potassium nitrate and enhanced by the addition of nonionic surfactants (Brij30, Brij35, Triton X100 or Triton N101) at critical micelle concentration (CMC). Phenanthrene degradation was delayed at levels above CMC.  相似文献   

12.
Biodegradation of two superabsorbent polymers, a crosslinked, insoluble polyacrylate and an insoluble polyacrylate/ polyacrylamide copolymer, in soil by the white-rot fungus, Phanerochaete chrysosporium was investigated. The polymers were both solubilized and mineralized by the fungus but solubilization and mineralization of the copolymer was much more rapid than of the polyacrylate. Soil microbes poorly solublized the polymers and were unable to mineralize either intact polymer. However, soil microbes cooperated with the fungus during polymer degradation in soil, with the fungus solubilizing the polymers and the soil microbes stimulating mineralization. Further, soil microbes were able to significantly mineralize both polymers after solubilization by P. chrysosporium grown under conditions that produced fungal peroxidases or cellobiose dehydrogenase, or after solubilization by photochemically generated Fenton reagent. The results suggest that biodegradation of these polymers in soil is best under conditions that maximize solubilization.  相似文献   

13.
Degradation of trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) was investigated in soils taken from three different locations at Harran region of Turkey under laboratory conditions. Surface (0-10 cm) soils, which were taken from a pesticide untreated field Gürgelen, Harran-1 and Ikizce regions in the Harran Plain. were incubated in biometer flasks for 350 days at 25 degrees C. Ring-UL-14C-trifluralin was applied at the rate of 2 microg g(-1) with 78.7 kBq radioactivity per 100 g soil flask. Evolved (14)CO2 was monitored in KOH traps throughout the experiment. Periodically, soil sub-samples were removed and extracted by supercritical fluid extraction (SFE). Unextractable soil-bound 14C residues were determined by combustion. During the 350 days incubation period 6.6, 5.4, and 3.3/' of the applied radiocarbon was evolved as (14)CO2 from the Harran-1, Gürgelen, and Ikizce soil, respectively. At the end of 350 days the SFE-extractable and bound 14C-trifluralin residues were 39.0 and 29.2% of the initially applied herbicide in Gürgelen soil. The corresponding values for Harran-1 and Ikizce soils were 36.2, 28.4% and 41.6, 18.5% respectively.  相似文献   

14.
Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens.  相似文献   

15.
Biodegradation of fluoranthene by soil fungi   总被引:1,自引:0,他引:1  
A selection of 39 strains of micromycetes known as good degraders of polychlorinated aromatic compounds, mostly isolated from soil and belonging to various taxonomic groups, have been investigated for fluoranthene degradation. Toxicity assays, first evaluated on solid medium MEA, have not shown any toxicity of fluoranthene (1-100 mg.L-1) towards fungi. Whereas, consumption assays on a solid synthetic medium showed a toxicity at 100 mg.L-1. The degradation of fluoranthene (10 mg.L-1) was then investigated in a liquid synthetic medium for 4 days and evaluated by HPLC. Among the 39 strains tested, 18 degraded fluoranthene at 60% or more. Zygomycetes appeared to be the most efficient group (mean degradation: 90%). Among 18 performant strains, 10 had not yet been reported in the literature: Sporormiella australis, Cryptococcus albidus, Cicinobolus cesatii, Pestalotia palmarum, beauveria alba, Aspergillus terreus. Cunninghamella blakesleeana, C. echinulata, Mortierella ramanniana and Rhizopus arrhizus. Fluoranthene adsorption on fungi was very low for the strains which degraded well fluoranthene (mean adsorption: 4%). Whereas, some strains adsorbed it much more such as Colletotrichum dematium (47%) and Penicillium italicum (43%).  相似文献   

16.
The oxidation of imidazolium (1-hexyl-3-methylimidazolium chloride, HmimCl) and pyridinium (1-butyl-4-methylpyridinium chloride, BmpyrCl) ionic liquids (ILs) by Fenton’s reagent has been studied. Complete conversion was achieved for both ILs using the stoichiometric H2O2 dose at 70 °C, reaching final TOC conversion values around 45 and 55% for HmimCl and BmpyrCl, respectively. The decrease in hydrogen peroxide dose to substoichiometric concentrations (20–80% stoichiometric dose) caused a decrease in TOC conversion and COD removal and the appearance of hydroxylated oxidation by-products. Working at these substoichiometric H2O2 doses allowed the depiction of a possible degradation pathway for the oxidation of both imidazolium and pyridinium ILs. The first step of the oxidation process consisted in the hydroxylation of the ionic liquid by the attack of the ·OH radicals, followed by the ring-opening and the formation of short-chain organic acids, which could be partially oxidized up to CO2 and H2O. At H2O2 doses near stoichiometric values (80%), the resulting effluents showed non-ecotoxic behaviour and more biodegradable character (BOD5/COD ratio around 0.38 and 0.58 for HmimCl and BmpyrCl, respectively) due to the formation of short-chain organic acids.
Graphical abstract ?
  相似文献   

17.
Biodegradation of endosulfan by a soil bacterium   总被引:1,自引:0,他引:1  
A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.  相似文献   

18.
Aromatic sulfonates (R-SO(3)(-)) can be used as sulfur sources by sulfate-starved bacteria in laboratory cultures and the corresponding phenols are excreted from the cells. The present study was conducted to demonstrate whether such desulfonation reactions also occur in sulfate-leached agricultural soil, where desulfonation of organic sulfur compounds may have agronomic importance as a S source for plants. Xenobiotic linear alkylbenzene sulfonates (LAS) were added to nominal concentrations of 0, 10 and 100 mgkg(-1) dry weight in a sandy soil that was depleted in sulfate by leaching the soil with water (sulfate depletion, approximately 75%). The soil was incubated at 20 degrees C in duplicate 3-dm(3) mesocosms for 8 weeks. Primary degradation of LAS was rapid with half-lives of 1-4 days. Sulfophenylcarboxylates were identified and quantified as intermediates, whereas linear alkylphenols (the expected primary desulfonation products) were not detected by high-pressure liquid chromatography coupled with both fluorescence and electrospray ionization-mass spectrometry. Thus, LAS was used by the bacteria as a source of energy and carbon, rather than as a source of sulfur. Measurements of soil pH, fluorescein diacetate (FDA) hydrolysis and arylsulfatase activity showed that stable microbial conditions prevailed in the soil mesocosms. FDA hydrolysis (a measure of total microbial activity) was transiently inhibited at the highest LAS concentrations. Arylsulfatase activity (i.e., hydrolysis of aromatic sulfate esters) was not significantly affected by the soil incubation, although arylsulfatases may be upregulated in sulfate-starved bacteria. However, an increased production of arylsulfatase may be difficult to detect due to the background of extracellular arylsulfatases stabilised in the soil. Therefore, the present data does not exclude a regulatory response to sulfate depletion by the soil microorganisms. However, the importance of desulfonation reactions in natural environments still needs to be demonstrated.  相似文献   

19.
合成3种结构和性质呈规律性递变的离子液体1-烷基-3-甲基咪唑溴化盐[CnMIm]Br(n=8、10、12),作为萃取剂替代有机溶剂用于油基钻屑的萃取处理。研究了离子液体结构对油去除率的影响规律,发现随着阳离子烷基链长的增加,油去除率提高。通过考察离子液体种类、加量、萃取时间及pH值等对萃取效果的影响,优选[C12MIm]Br为最佳萃取剂,油基钻屑与萃取液质量比为1:1、pH大于7时,萃取在20 min时就可以达到平衡,油基钻屑中油去除率大于85%,离子液体吸附损失率小于1%,分离后的离子液体可直接重复利用6次。  相似文献   

20.
水溶性离子液体对甲苯的吸收效果及影响因素   总被引:1,自引:0,他引:1  
张乐  肖潇  晏波  肖贤明 《环境工程学报》2017,11(3):1683-1690
选择3种水溶性离子液体(十二烷基咪唑氯盐(DDMIM Cl)、十二烷基咪唑硝酸盐(DDMIM NO3)、十二烷基咪唑双氰胺盐(DDMIM DCA))作为研究对象,对模拟甲苯废气进行吸收实验,研究了吸收液的吸收性能、甲苯浓度、吸收液浓度、进气气速以及盐度等因素对吸收效果的影响以及加热蒸馏法对吸收液的再生与甲苯回收的可行性。结果表明:不同的离子液体对甲苯的吸收率不同,DDMIM DCA的吸收效果最好,在质量分数为5%时,初始吸收率达到98%,饱和吸收量为53.39 mg·L-1,而DDMIM Cl、DDMIM NO3对甲苯的初始吸收率在92%左右,饱和吸收量分别为33.60、37.01 mg·L-1;甲苯饱和吸收量与吸收液浓度、甲苯进气浓度呈正相关,与进气气速、含盐度呈负相关;传质系数与甲苯进气浓度、进气气速以及含盐度呈正相关,与吸收液浓度呈负相关;采用加热蒸馏法进行甲苯回收及吸收液再利用时,甲苯的回收效率达到85%~90%,且甲苯的饱和吸收量随着重复利用次数的增加而基本保持不变。因此利用离子液体溶液处理甲苯废气理论上是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号