首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
There is a lack of information on ammonia (NH3) emissions from cattle housing systems in Mediterranean countries, with most published data deriving from NW Europe. An investigation was carried out in NW Portugal to quantify NH3 emissions for the main types of dairy cattle buildings in Portugal, i.e. naturally ventilated buildings and outdoor concrete yards, and to derive robust emission factors (EFs) for these conditions and compare with EFs used elsewhere in Europe. Measurements were made throughout a 12-month period using the passive flux sampling method in the livestock buildings and the equilibrium concentration technique in outdoor yards.The mean NH3 emission factor for the whole housing system (buildings + outdoor yards) was 43.7 g NH3–N LU?1 day?1 and for outdoor concrete yards used by dairy cattle was 26.6 g NH3–N LU?1 day?1. Expressing NH3 emission in terms of the quantity of liquid milk produced gave similar values across the three dairy farms studied (with a mean of 2.3 kg N ton-milk?1 produced) and may have advantages when comparing different farming systems. In dairy houses with outdoor yards, NH3 emissions from the yard area contributed to 69–92% of total emissions from this housing system. Emissions were particularly important during spring and summer seasons from outdoor yards with NH3 emitted in this period accounting for about 72% of annual emissions from outdoor yards. Mean NH3 emission factors derived for this freestall housing system and outdoor concrete yards used by dairy cattle in Portugal were higher than those measured in northern Europe. In addition, values of animal N excretion estimated in this study were greater than official National standard values. If these emissions are typical for Portuguese dairy systems, then the current National inventory underestimates emissions from this source in NW of Portugal, because of the use of lower standard values of N excretion by dairy cattle.  相似文献   

2.

The objective of this research is to discuss the relationship between the growth of livestock and the environmental impact it generates in Colombia. For this, data were extracted from the FAO STAT for the period of 1961 to 2017. The livestock inventory has had a significant growth during the last 50 years. This has generated environmental exposure and the release of carbon, sequestered by continuous deforestation performed in the practice of extensive livestock. Recurring to vector error correction models, we observed the existence of long-term relations between CO2 emissions from dairy cattle and emissions from slaughtered cattle, deforestation, pastures, and forest development. Changes in CO2 emissions from dairy cattle tend to be anticipated by changes in CO2 emissions from the other analyzed sources, which prove how the current investment in dairy cattle results from the accumulated debates in Colombia regarding the different sources of livestock emissions.

  相似文献   

3.
An agricultural ammonia (NH3) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 × 5 km2 resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH3-N yr−1 for the NCP, accounting for 27% of the total emissions in China. NH3 emission from mineral fertilizer application contributed 1620 kt NH3-N yr−1, 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH3 emissions map was developed based on 1 × 1 km land use database and aggregated to a 5 × 5 km grid resolution. The highest emission density value was 198 kg N ha−1 yr−1.  相似文献   

4.
In Canada approximately 45% of ammonia (NH3) emissions are attributed to dairy and beef cattle industries. The present study focused on NH3 emissions from a beef feedlot with a one-time capacity of 17,220 head. The aim was to improve the Canadian NH3 emission inventories and air quality forecasting capabilities. A Cessna 207, equipped with a fast-response NH3/NOy detector and a quadrupole aerosol mass spectrometer, was flown in a grid pattern covering an area of 8 × 8 km centered on a feedlot (800 × 800 m) at altitudes ranging from 30 to 300 m above ground. Stationary ground measurements of NH3 concentration and turbulence parameters were made downwind of the feedlot. Three flights were conducted under varying meteorological conditions, ranging from very calm to windy with near-neutral stratification. NH3 mixing ratios up to 100 ppbv were recorded on the calm day, up to 300 m above ground. An average feedlot NH3 emission rate of 76 ± 4 μg m?2 s?1 (equivalent to 10.2 g head?1 h?1) was estimated. Characteristics of the measured NH3 plume were compared to those predicted by a Lagrangian dispersion model. The spatially integrated pattern of NH3 concentrations predicted and measured agreed but the measured was often more complex than the predicted spatial distribution. The study suggests that the export of NH3 through advection accounted for about 90% of the emissions from the feedlot, chemical transformation was insignificant, and dry deposition accounted for the remaining 10%.  相似文献   

5.
Ammonia emission from grassland and livestock production systems in the UK   总被引:3,自引:0,他引:3  
Emissions of ammonia were measured from livestock excreta and fertilisers applied to grass swards, from grazed paddocks, from decomposing grass herbage and from an animal house containing dairy cows. Emissions from urine, dung, slurry and fertilisers were determined using a system of wind tunnels with each tunnel covering an area of 1 m(2). Emissions from grazed swards were determined using a micrometeorological mass balance method. From the results of these measurements, together with other published information, an inventory for ammonia emissions has been calculated for grassland and livestock production systems over the UK as a whole. It is estimated that emissions from grassland and cattle and sheep production amount to about 230 kt NH(3)-N annually, while emissions from pig and poultry production amount to about 40 kt and 80 kt NH(3)-N, respectively.  相似文献   

6.
Many farms have unroofed concrete yards used by livestock. These concrete yards have received little attention as sources of gaseous emissions. From 1997 to 1999 measurements were made of emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from 11 concrete yards used by livestock. A postal survey was carried out to assess the areas of yards on farms in England and Wales to enable the measurements to be scaled up to estimate national emissions. Using the results of this study NH3-N emissions from farm concrete yards were calculated to be ca. 35×103 t annually. This is 13% of the current estimated total NH3-N emission from UK livestock. Concrete yards were an insignificant source of N2O and CH4 which were both <0.01% of current estimates of agricultural emissions.  相似文献   

7.
Abstract

There is a need for a robust and accurate technique to measure ammonia (NH3) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Two consecutive seasonal studies were conducted to measure NH3 emissions from an open-lot dairy in central Texas in July and December of 2005. Data including NH3 concentrations were collected and NH3 emission fluxes (EFls), emission rates (ERs), and emission factors (EFs) were calculated for the open-lot dairy. A protocol using flux chambers (FCs) was used to determine these NH3 emissions from the open-lot dairy. NH3 concentration measurements were made using chemiluminescence-based analyzers. The ground-level area sources (GLAS) including open lots (cows on earthen corrals), separated solids, primary and secondary lagoons, and milking parlors were sampled to estimate NH3 emissions. The seasonal NH3 EFs were 11.6 ± 7.1 kg-NH3 yr-1head-1 for the summer and 6.2 ± 3.7 kg-NH3 yr-1head-1 for the winter season. The estimated annual NH3 EF was 9.4 ± 5.7 kg-NH3 yr-1head-1 for this open-lot dairy. The estimated NH3 EF for winter was nearly 47% lower than summer EF. Primary and secondary lagoons (~37) and open-lot corrals (~63%) in summer, and open-lot corrals (~95%) in winter were the highest contributors to NH3 emissions for the open-lot dairy. These EF estimates using the FC protocol and real-time analyzer were lower than many previously reported EFs estimated based on nitrogen mass balance and nitrogen content in manure. The difference between the overall emissions from each season was due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH3 emission from the open-lot earthen corrals due to variable animal density within feeding and shaded and dry divisions of the open lot. This spatial variability was attributed to dispirit manure loading within these areas.  相似文献   

8.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

9.
Measurements of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N2O and CH4 emissions. Outdoor yards used by livestock proved to be an important source of NH3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH3-N m−2 h−1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH3-N m−2 h−1. Emission rates of N2O and CH4 were much smaller and for CH4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.  相似文献   

10.
11.
A UK inventory of the nitrous oxide (N2O) emissions from farmed livestock was compiled to identify areas where potential abatement practices may be effective. Where possible, emission factors based on direct experimental data gathered under UK conditions were used, but published data were used when this was not feasible, together with statistical information, which included details of numbers of animals within each category of a species, animal liveweights, number of days housed, excretal rates and volumes of manures in stores. Total N2O emissions were calculated for each component of livestock production systems, i.e. animal houses, manure stores, following application of manures to land and during grazing. Emissions were also estimated from land used for forage conservation and tillage. Total annual N2O emissions from UK farmed livestock, based mainly on 1996 animal census data, were estimated to be 38.27 kt. The two main terms were 22.66 kt N2O from mineral fertilisers after application to soils and 5.61 kt N2O from stored manures (mainly in the form of farmyard manure). Within buildings, poultry were the largest contributors of N2O, 2.97 kt, followed by cattle, 1.62 kt. Within the total emissions from stored manures, cattle were the largest contributors of N2O, 3.58 kt, followed by poultry, 1.86 kt. Dietary manipulation and a move from solid manure based systems to slurry based systems appear to be promising abatement practices.  相似文献   

12.
Ammonia, nitrous oxide, and methane emission from animal farming of South, Southeast, and East Asia, in 2000, was estimated at about 4.7 Tg NH3–N, 0.51 Tg N2O–N, and 29.9 Tg CH4, respectively, using the FAO database and countries’ statistic databases as activity data, and emission factors taking account of regional characteristics. Most of these atmospheric components, up to 60–80%, were produced in China and India. Pakistan, Bangladesh, and Indonesia, which were large source countries next to China and India, contributed more than a few percent of total emission of each atmospheric component. The largest emission livestock were cattle whose contribution was considerably high in South, Southeast, and East Asia; more than one-fourth of ammonia and nitrous oxide emissions: more than half of methane emission. The other major livestock for nitrous oxide and ammonia emissions were pigs. For methane emission, buffaloes were second source livestock. To provide spatial distributions of these gases, the emissions of county and district level were allocated into each 0.5° grid by means of the weighting by high-resolution land cover datasets. The regions with considerable high emissions of all components were able to be found at the Ganges delta and the Yellow River basin. The spatial distributions for ammonia and nitrous oxide emissions were similar but had a substantial difference from methane distribution.  相似文献   

13.
Abstract

Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

14.
This paper describes the method used to create an ammonia inventory for Denmark and presents the emission factors used and their justification. The total Danish emission for 1996 was 92,700 t NH4+–N, with agriculture accounting for nearly 99%. Emissions from animal manure accounted for 76% of agricultural emissions. We conclude that there will be a continued demand for inventories based on emission factors, despite their lack of physical and chemical realism, but that they will become more complex. This will place increased demands on the statistical information available and on the knowledge of the underlying science.  相似文献   

15.
Here we present an uncertainty analysis of NH3 emissions from agricultural production systems based on a global NH3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH3 emission from agricultural systems is 27–38 (with a mean of 32) Tg NH3-N yr−1, N fertilizer use contributing 10–12 (11) Tg yr−1 and livestock production 16–27 (21) Tg yr−1. Most of the emissions from livestock production come from animal houses and storage systems (31–55%); smaller contributions come from the spreading of animal manure (23–38%) and grazing animals (17–37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH3 emission comprise four parameters (N excretion rates, NH3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.  相似文献   

16.
This study characterized the seasonal concentration (C) and emission (E) patterns of odor, ammonia (NH3), and hydrogen sulfide (H2S) over the course of a whole year and their diurnal patterns in cold, warm, and mild seasons for a naturally ventilated free-stall dairy barn. It was found that seasonal odor and NH3 and H2S emissions varied greatly: from 17.2 to 84.4 odor units (OU) sec?1 AU?1 (AU: animal unit, 500 kg of animal body mass), from 0.27 to 0.92 mg sec?1 AU?1, and from 3 to 105 μg sec?1 AU?1, respectively. The overall concentrations of odor and NH3 were higher in the winter, whereas the emissions were higher in the mild and warm seasons. Diurnal variation was most significant for odor emission (OE) in the mild season when the ratio of maximum (279.2 OU sec?1 AU?1) to minimum value (60.5 OU sec?1 AU?1) was up to 4.6. The indoor air quality was also evaluated by considering not only the health effect of individual gases, but also the additive effect of NH3 and H2S. Results showed that the indoor air quality was poorest in cold seasons when NH3 C could exceed the threshold limit set out in occupational health regulation, and in fact could worsen due to the additive effect of the two gases. Further, it was suggested NH3 was a good indicator for predicting odor concentration (OC) or OE. The impact of climatic parameters on odor and gases were also examined, and it was found ventilation rate (VR) negatively affected OC and NH3 C, but positively impacted OE and NH3 E. Using 70% of the total data, a multilinear model for OE was developed as a function of VR and indoor relative humidity and was validated to be acceptable using the rest of the data.

Implications: Diurnal and seasonal variations of odor, NH3, and H2S concentrations and emissions were monitored for a naturally ventilated dairy barn in a cold region. The emission factors were calculated and indoor air quality was evaluated. The overall odor and NH3 concentrations were higher in winter, whereas emissions were higher in the mild and warm seasons. Diurnal variation was most significant for odor emission in the mild season, when the ratio of maximum to minimum value was up to 4.6. The results can be used to estimate odor and gas emissions from other dairy barns in Canada and other cold regions.  相似文献   

17.
Dynamics of livestock and poultry manure nutrient was analyzed at a provincial scale from 2002 to 2008. The nutrient capacity of 18 kinds of croplands and grasslands to assimilate nutrients was assessed in the same temporal–spatial scale. Manure nitrogen (N) had increased from 5.111 to 6.228 million tons (MT), while manure phosphorus (P) increased from 1.382 to 1.607 MT. Manure N and P share similar spatial patterns of yields, but proportion of specialized livestock husbandry and contribution of leading livestock categories (swine, cattle, cow, sheep, layer chicken, broiler chicken) were different. The nutrients generated from dominant seven provinces took more than about half of total manure N in China. After subtracting the chemical fertilizers, there were some manure nutrient capacities in western part of China. Risk analysis of manure nutrient pollution overload in eastern and southern parts of China was serious, which should restrict livestock's developments. Amount of chemical fertilizers applied should be reduced to make room for manure nutrients. For the sake of greenhouse effects, the emission of methane (CH4) and nitrous oxide (NO x ) emissions in China is serious for the global change, thus merits further statistics and studies. The spatial and temporal pattern of Chinese manure nutrient pollution from livestock and the assimilation capacity of cropland and grassland can provide useful information for policy development on Chinese soil environment and livestock.  相似文献   

18.
Abstract

Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996–1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by ~17%, 35% for SO4 2?, and 29% for NH4 +, whereas NO3 ? increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 μg/m-3, accounting for ~26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer.

Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3 ?, SO4 2?, NH4 +, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

19.
Improved measurements of ammonia losses from cattle feedlots are needed to quantify the national NH3 emissions inventory and evaluate management techniques for reducing emissions. Speciation cartridges composed of glass honeycomb denuders and filter packs were adapted to measure gaseous NH3 and aerosol NH4+ fluxes using relaxed eddy accumulation (REA). Laboratory testing showed that a cartridge equipped with four honeycomb denuders had a total capture capacity of 1800 μg of NH3. In the field, a pair of cartridges was deployed adjacent to a sonic anemometer and an open-path gas analyzer on a mobile tower. High-speed valves were attached to the inlets of the cartridges and controlled by a datalogger so that up- and down-moving eddies were independently sampled based on direction of the vertical wind speed and a user-defined deadband. Air flowed continuously through the cartridges even when not sampling by means of a recirculating air handling system. Eddy covariance measurement of CO2 and H2O, as measured by the sonic and open-path gas analyzer, were used to determine the relaxation factor needed to compute REA-based fluxes. The REA system was field tested at the Beef Research Unit at Kansas State University in the summer and fall of 2007. Daytime NH3 emissions ranged between 68 and 127 μg m?2 s?1; fluxes tended to follow a diurnal pattern correlated with latent heat flux. Daily fluxes of NH3 were between 2.5 and 4.7 g m?2 d?1 and on average represented 38% of fed nitrogen. Aerosol NH4+ fluxes were negligible compared with NH3 emissions. An REA system designed around the high-capacity speciation cartridges can be used to measure NH3 fluxes from cattle feedlots and other strong sources. The system could be adapted to measure fluxes of other gases and aerosols.  相似文献   

20.
Methane (CH4) is the dominant greenhouse gas emitted by animal agriculture manure. Since the gas is relatively insoluble in water, it is concentrated in discrete bubbles that rise through waste lagoons and burst at the surface. This results in lagoon emissions that are inhomogeneous in both space and time. Emissions from a midwestern dairy waste lagoon were measured over 2 weeks to evaluate the spatial homogeneity of the source emissions and to compare two methods for measuring this inhomogeneous emission. Emissions were determined using an inverse dispersion model based on CH4 concentrations measured both by a single scanning tunable diode laser (TDL) aimed at a series of reflectors and by flame ionization detection (FID) gas chromatography on line-sampled air. Emissions were best estimated using scanned TDL concentrations over relatively short optical paths that collectively span the entire cross-wind width of the source, so as to provide both the best capture of discrete plumes from the bursting bubbles on the lagoon surface and the best detection of CH4 background concentrations. The lagoon emissions during the study were spatially inhomogeneous at hourly time scales. Partitioning the inhomogeneous source into two source regions reduced the estimated emissions of the overall lagoon by 57% but increased the variability. Consequently, it is important to assess the homogeneity of a source prior to measurements and final emissions calculation.

Implications: Plans for measuring methane emissions from waste lagoons must take into account the spatial inhomogeneity of the source strength. The assumption of emission source homogeneity for a low-solubility gas such as CH4 emitted from an animal waste lagoon can result in significant emission overestimates. The entire breadth and length of the area source must be measured, preferably with multiple optical paths, for the detection of discrete plumes from the different emitting regions and for determining the background concentration. Other gases with similarly poor solubility in water may also require partitioning of the lagoon source area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号