首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Solubility of lead, zinc and copper added to mineral soils   总被引:25,自引:0,他引:25  
Elevated levels of heavy metals in soils are a result of industrial activities, atmospheric deposition, and the land application of sewage sludges and industrial by-products. Their persistence in the soil environment has created interest in the possible changes in solubility. In this study, total dissolved concentrations of Pb, Zn, and Cu were monitored in seven metal-amended soils (a calcareous and six acid mineral soils). Single metal solutions were added to soils and equilibrated (aged) for 40 days. During the 40 days the soil was allowed to air-dry and was rewetted in cycles of about 5 days. At the end of this reaction period, metal solubility was measured (by atomic absorption spectrometry and direct current plasma spectrometry) at the initial soil pH and at decreased pH values which were induced by addition of small aliquots of acid. As expected, solubility of added Pb, Zn, and Cu increased with a decrease in pH. Furthermore, the results showed that the solubility relationship with pH was similar in all non-calcareous soils. This suggests that metal solubility may be controlled by similar soil components, presumably involving soil characteristics such as pH, organic matter content, and soil mineralogy. For each metal, an approximate pH value was found at which solubility deviated from the solubility of metals when they occur in soils at typical (natural) values. This pH was about (pH+/-0.2): 5.2 for Pb, 6.2 for Zn, and 5.5 for Cu. Thus, pH values below these thresholds may enhance metal mobility, biological availability and toxicity in soils. Metals dissolved at higher pH in the calcareous soil (18.8 g kg(-1) inorganic carbon, initial pH 8.2). In a calcareous soil, a significant fraction of these metals react with carbonates, and decreased pH results in much higher metal dissolution. Yet, metal solubility in soils is not determined by the formation and dissolution of single metal compounds.  相似文献   

2.
Sorption of copper, zinc and lead on soil mineral phases   总被引:3,自引:0,他引:3  
Sipos P  Németh T  Kis VK  Mohai I 《Chemosphere》2008,73(4):461-469
Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils.  相似文献   

3.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

4.
CHUM-AM was used to investigate the behaviours of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in three moorland sub-catchments in Cumbria UK. The principal processes controlling cationic metals are competitive partitioning to soil organic matter, chemical interactions in solution, and chemical weathering. Metal deposition histories were generated by combining measured data for the last 30 years with local lake sediment records. For Ni, Cu, Zn and Cd, default parameters for the interactions with organic matter provided reasonable agreement between simulated and observed present-day soil metal pools and average streamwater concentrations. However, for Pb, the soil binding affinity in the model had to be increased to match the observations. Simulations suggest that weakly-sorbing metals (Ni, Zn, Cd) will respond on timescales of decades to centuries to changes in metal inputs or acidification status. More strongly-sorbing metals (Cu, Pb) will respond over centuries to millennia.  相似文献   

5.
Most studies dealing with phytoremediation have considered metal extraction efficiency in relation to metal concentration of bulk soil samples or metal concentration of the soil solution. However, little is known about the effect of various metal-bearing solids on plant growth and metal extraction of hyperaccumulators. In this study, we investigated the ability of Arabidopsis halleri to grow and extract metals from different substrates consisting in an unpolluted soil amended with various metal-bearing solids collected in soils around a Zn smelter complex. The metal-bearing solids used as amendments were: fresh and decomposing organic residues in the soil, a soil clay fraction and two waste slags. Pure mono-metallic salt (ZnSO4) was also used. Two series of substrates were produced, one moderately polluted, and the other highly polluted. An additional substrate was formed by the unamended soil, and used as an unpolluted control. Zn, Cd, Cu, and Pb were measured in the substrates, and in the roots and shoots of A. halleri. The dry matter yield of A. halleri was shown not to depend on the nature of the metal-bearing solid used, except when Cu-toxicity was suspected. On highly-polluted substrates, Zn extraction by A. halleri depended on the nature of metal-bearing solids used, showing the following trend: pure mono-metallic salt > waste slags and soil clay fraction > fresh and decomposing organic matter. We explained these differences by the high solubility of Zn in the mono-metallic salt, whereas in the mineral metal-bearing solids and in both fresh and decomposing organic matter, Zn release required mineral weathering or organic matter mineralization, respectively. This work clearly showed that phytoremediation studies have to consider the nature of metal-bearing solids in contaminated soils to better predict the efficiency of plant extraction.  相似文献   

6.
The CHemistry of the Uplands Model (CHUM) describes the transport of chemicals through upland catchments with acid, organic-rich soils, by a combination of sub-models for equilibrium soil chemistry, hydrology, weathering, and nitrogen cycling. CHUM was used to simulate the retention and transport of metallic radionuclides (Co, Sr, Cs, UO(2), U(IV), Th, Am), in the soils of a small catchment in Cumbria, UK, for 2 years after their atmospheric deposition in a single hypothetical precipitation event. Export of radionuclides to streamwater is calculated to occur most readily following deposition of the dissolved elements at high water saturation of the catchment, when little incoming rainwater is required to make up the small moisture deficit of the organic surface horizon, and solutes can move to greater depths in the soil profile. Deposition when the catchment is drier, or of particulate radionuclides, leads to stronger retention. Radionuclide retention or transport depends on the strength of chemical interaction with the solid phases of the different soil horizons; this varies among the elements, and also with oxidation state, U(IV) species being more strongly retained than UO(2). For purely organic soils, the least strongly retained radionuclide is Cs, but the presence in the mineral soil horizon of small amounts of clay mineral with high selectivity towards Cs can markedly increase with high selectivity towards Cs can markedly increase its retention. For the actinides, binding by dissolved organic matter is important; for example, the rate of transport of Th to the stream is increased by more than two orders of magnitude by complexation with dissolved fulvic acid. The model assumptions suggest that, in the longer term, losses from the catchment of Co, Sr and Cs would take place on a time-scale of decades, whereas the actinides would be much more persistent.  相似文献   

7.
Sequential extractions of metals can be useful to study metal distributions in various soil fractions. Although several sequential extraction procedures have been suggested in the literature, most were developed for temperate soils and may not be suitable for tropical soils with high contents of Mn and Fe oxides. The objective of this study was to develop a sequential fractionation procedure for Cu and Zn in tropical soils. Extractions were performed on surface (0–20 cm) samples of ten representative soils of Sao Paulo State, Brazil. Chemically reactive Mn forms were satisfactorily assessed by the new modified procedure. Amorphous and crystalline Fe oxides were more selectively extracted in a new two-step extraction. Soil-born Zn and Cu were primarily associated with recalcitrant soil fractions. The proposed procedure provided more detailed information on metal distribution in tropical soils and better characterization of the various components of the soil matrix. The new procedure is expected to be an important tool for predicting the potential effects of environmental changes and land application of metals on the redistribution of chemical forms of metals in tropical soils.  相似文献   

8.
Amending soils with compost may lead to accumulation of metals and their fractions at various concentrations in the soil profile. The objectives of this study were to determine 1) the accumulation of Cu, Fe, Mn, and Zn with depth and 2) the distribution of water soluble, exchangeable, carbonate, Fe-Mn oxides, organic and residual forms of each metal in soils amended with MSW compost, co-compost, biosolids compost and inorganic fertilizer (as control). Total concentrations of Cu, Fe, Mn and Zn were concentrated in the 0-22 cm soil layer and scant in the rock layer. These metals were in the decreasing order of Fe > Mn > Zn > or = Cu. Copper, Fe, and Zn were predominantly in the residual form followed by fractions associated with Fe-Mn oxides, carbonate, organic, exchangeable and water soluble in all treatments except MSW compost amended soil where the organic fraction was higher than the carbonate fraction. In fertilizer, co-compost and biosolids compost treated soils Mn concentrated mainly in the Fe-Mn oxides form followed by residual, carbonate, and organic forms whereas, in MSW compost treated soil the same pattern occurred except that Mn organic fraction was higher than that in the carbonate form. The MSW compost has a greater potential to be used as a soil amendment to supply plants with Cu, Mn and Zn than other treatments in calcareous soils of south Florida.  相似文献   

9.
The distribution and chemical fractionation of heavy metals retained in mangrove soils receiving wastewater were examined by soil column leaching experiments. The columns, filled with mangrove soils collected from two swamps in Hong Kong and the People's Republic of China, were irrigated three times a week for 150 days with synthetic wastewater containing 4 mg l(-1) Cu, 20 mg l(-1) Zn, 20 mg l(-1) Mn and 0.4 mg l(-1) Cd. Soil columns leached with artificial seawater (without any heavy metals) were used as the control. At the end of the leaching experiments, soil samples from each column were divided into five layers according to its depth viz. 0-1, 1-3, 3-5, 5-10 and > 10 cm, and analyzed for total and extractable heavy metal content. The fractionation of heavy metals in the surface soil samples (0-1 cm) was investigated by the sequential extraction technique. In both types of mangrove soils, the surface layer (0-1 cm) of the columns receiving wastewater had significantly higher concentrations of total Cu, Cd, Mn and Zn than the control. Concentrations declined significantly with soil depth. The proportion of exchangeable heavy metals in soils receiving wastewater was significantly higher than that found in the control, about 30% of the total heavy metals accumulated in the soil masses of the treated columns were extracted by ammonium acetate at pH 4. The sequential extraction results show that in native mangrove soils (the soils without any treatment), the major portion of Cu, Zn, Mn and Cd was associated with the residual and precipitated fractions with very low concentrations in more labile phases. However, in mangrove soils receiving wastewater, a significantly higher percentage of Mn, Zn and Cd was found in the water-soluble and exchangeable fractions. Copper appeared to be more strongly adsorbed in mangrove soils than the other heavy metals. In general, heavy metal accumulation in the surface mangrove soils collected in Hong Kong was higher than those in the PRC, although the metals in the latter soil type were more strongly bound. These findings suggest that whether the heavy metal retained in managrove soils becomes a secondary source or a permanent sink would depend on the kinds of heavy metals and also the types of mangrove soils.  相似文献   

10.
Halim M  Conte P  Piccolo A 《Chemosphere》2003,52(1):265-275
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 microg/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO(3)) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal-humic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO(3) further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.  相似文献   

11.
Feng MH  Shan XQ  Zhang SZ  Wen B 《Chemosphere》2005,59(7):939-949
There is no method recognized as a universal approach for evaluation of bioavailability of heavy metals in soil. Based on the simulation of the rhizosphere soil conditions and integration of the combined effects of root-soil interactions as a whole, a rhizosphere-based method has been proposed. Wet fresh rhizosphere soil was extracted by low-molecular-weight organic acids (LMWOAs) to fractionate metal fractions of soil pools, which were then correlated with the metal contents of wheat roots and shoots. The rhizosphere-based method was compared with other one-step extraction methods using DTPA, EDTA, CaCl2, and NaNO3 as extractants and the first step of the Community Bureau of Reference (BCR) method. Simple correlation and stepwise multiple regression analysis were used for the comparison. Simple correlation indicated that the extractable Cu, Zn, Cr, and Cd of soils by the rhizosphere-based method were significantly correlated with the metal contents of wheat roots. For DTPA, BCR1 and EDTA methods there was a relatively poor correlation between the extractable Cu, Zn and Cd of soil and metal contents of wheat roots. Stepwise multiple regression analysis revealed that the equation of the rhizosphere-based method was the simplest one, and no soil properties variables needed to be added. In contrast, the equations of other one-step extraction methods were more complicated, and soil properties variables needed to be entered. The most distinct feature of the rhizosphere-based method was that the recommended method was suitable for acidic, neutral and near alkaline soils. However, the DTPA and EDTA extraction methods were suitable for calcareous soils only-or-only for acidic soils. The CaCl2, and NaNO3 extraction methods were only suitable for exchangeable metals. In short, the rhizosphere-based method was the most robust approach for evaluation of bioavailability of heavy metals in soils to wheat.  相似文献   

12.
Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind. Highlights ? Mining activities generated heavy metal pollution in fields around a Pb-Zn mine ? The elements from water and soils are strongly correlated ? Anglesite and cerussite are evidence of galena transformation into secondary minerals ? Particulate matter is an important transport carrier of pollution  相似文献   

13.
Use of sequential extraction to assess metal partitioning in soils   总被引:12,自引:0,他引:12  
The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles.  相似文献   

14.
The intensive use for over 100 years of copper sulfate (Bordeaux mixture) to fight against mildew in vineyard soils has led to an important, widespread accumulation of Cu (100 to 1500 mg Cu kg-1 soil). In Champagne vineyards, organic amendments are used currently to increase soil fertility and to limit soil erosion. Organic amendments may have a direct effect on the retention of Cu in the soil. To assess the influence of the organic management on the fate of Cu in calcareous Champagne vineyard soils, we studied Cu distribution (1) in the soil profile and (2) among primary soil particles, in vineyard parcels with different amendments. Amendments were oak-bark, vine-shoots and urban compost. The results were compared with the amount and the distribution of Cu in an unamended calcareous soil. Physical soil fractionations were carried out to separate soil primary particles according to their size and density. Cu has a heterogeneous distribution among soil particle fractions. Two fractions were mainly responsible for Cu retention in soils: the organic debris larger than 50 microns or coarse particulate organic matter (POM) issued from the organic amendments, and the clay-sized fraction < 2 microns. The POM contained up to 2000 mg Cu kg-1 fraction and the clay fraction contained up to 500 mg Cu kg-1 fraction. The clay-sized fraction was responsible for almost 40% of the total amount of Cu in the four parcels. POM was predominantly responsible for the differences in Cu contents between the unamended and the three amended parcels. Our results attested that methods of soil particle-size fractionation can be successfully used to assess the distribution of metal elements in soils.  相似文献   

15.
A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model. The formation of soluble metal-complexes in the complexing extracts (predicted by the Visual Minteq calculations) led to the highest extraction efficiency with complexing extractants. Metal extractability patterns were related to both content and composition of carbonate, organic matter, Fe oxide and clay fractions. Potentially mobile metal fractions were mainly affected by the finest soil fractions (recalcitrant organic matter, active lime and clay minerals). In the case of Pb, scarce correlations between extractable Pb and soil constituents were obtained which was attributed to high Pb retention due to the formation of 4PbCO3·3PbO (corroborated by X-ray diffraction). In summary, the high metal proportion extracted with complexing agents highlighted the high but finite capacity to store potentially mobilizable metals and the possible vulnerability of these soils against environmental impact from metal accumulation.  相似文献   

16.
Heavy metals are potentially toxic to human life and the environment. Their contaminating effect in soils depends on chemical associations. Hence, determining the chemical form of a metal in soils is important to evaluate its mobility and bioavailability. We utilized a sequential extraction procedure and sorption isotherms (monometal and competitive) to evaluate the mobility and distribution of Cd, Cu, Ni, Pb, and Zn in four soils differing in their physicochemical properties: Calcixerollic Xerochrepts (Cx1 and Cx2), Paralithic Xerorthent (Px) and Lithic Haplumbrept (Lh). Most of the metals retained under point B conditions of sorption isotherms were extracted from the more mobile fractions: exchangeable and carbonates, in contrast with the profiles of the original soils where metals were preferently associated with the residual fraction. In soils having carbonate concentration under 6% (Cx1 and Lh), the exchangeable fraction was predominant, whereas in calcareous soils (Cx2 and Px) metals extracted from carbonates predominated. Partitioning profiles were in accordance with the affinity sequences deduced from the initial slope of isotherms and showed that the soils had a greater number of surface sites and higher affinity for Pb and Cu than for Cd, Ni, or Zn. In general, the simultaneous presence of the cations under study increased the percentages of metals released in the exchangeable fraction. The tendency towards less specific forms was more noticeable in Cx2 and Px soils and for Ni, Zn, and Cd. The affinity of inorganic surfaces was larger for Zn than for Cd or Ni, but the affinity of organic surfaces was larger for Cd or Ni than for Zn.  相似文献   

17.
According to the European Thematic Strategy for Soil Protection, the characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level that allow the detection of sampling sites affected by pollution. In relation to this, the surface horizons of 54 agricultural soils under vegetable crops in the Alicante province (Spain), a representative area of the European Mediterranean region, were sampled to determine the content of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Analytical determinations were performed by atomic absorption spectroscopy after microwave sample digestion in acid solution. Results indicated that heavy metal levels were similar to those reported by authors working on agricultural soils from other parts of the Mediterranean region, with the exception of Cu and Pb in some samples. Multivariate analysis (principal component analysis and cluster analysis) was performed to identify a common source for heavy metals. Moreover, soil properties were determined in order to characterize agricultural soils and to analyze relationships between heavy metal contents and soil properties. The content of Co, Cr, Fe, Mn, Ni and Zn were associated with parent rocks and corresponded to the first principal component called the lithogenic component. A significant correlation was found between lithogenic metals and some soil properties such as soil organic matter, clay content, and carbonates, indicating an important interaction among them. On the other hand, elements such as Cd, Cu and Pb were related to anthropic activities and comprised the second (Cu and Pb) and third principal components (Cd), designated the anthropogenic components. Generally, Cd, Cu and Pb showed a lower correlation with soil properties due to the fact that they remain in available forms in these agricultural soils. Taking into account these results and other achieved in other parts of the European Mediterranean region, it can be concluded that soil quality standards are highly needed to declare soils affected by human induced pollution. This is particularly relevant for anthropogenic metals (Cd, Cu and Pb, and in some areas also Zn). Further research in other agricultural areas of the region would improve the basis for proposing such soil quality standards.  相似文献   

18.
Surface soil samples were collected from 52 sites around Guanting Reservoir in Beijing, China, and contents of 'total' metals (Cu, Zn, Pb, Cd, As, Ni and Cr) were determined. The results indicate that the degree of heavy metal pollution in the soils declines in the order of Cd>Cr>Zn>As>Cu>Ni>Pb. Based on the results of a combination of multivariate statistics and geostatiscal analyses, it was concluded that land application of phosphate fertilizer, wastewater and sludge were the primary sources of Cd and Zn in soils. Whereas As, Cu, Cr and Ni in some soils were due to natural rock weathering. The sources of Pb in soils only partially originated from land application of phosphate fertilizer, but mainly from vehicle exhaust. The greatest concentrations of all metals, except for Pb, were found in Huailai County and the towns of Yanghedaqiao and Guanting.  相似文献   

19.
Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).  相似文献   

20.
Wang XP  Shan XQ  Zhang SZ  Wen B 《Chemosphere》2004,55(6):811-822
Currently, several single extraction methods are used for the evaluation of the phytoavailability of metals using pot experiments. A systematic comparison, however, is lacking. It is especially true for the field studies. This study was to investigate the phytoavailability of trace elements to vegetables grown on metal-contaminated soils under the field conditions. All soils collected were typical calcareous soils in northern China. Four frequently used methods using CaCl2, diethylenetriaminepentaacetic acid (DTPA), CH3COOH, and water as extractants were compared for phyto-availability. The concentrations of metals extracted by these four extraction methods ranged from 3.42 to 815, 1.51- 6965, 0.732-24473, 0.688-7863, 0.246-685, 1.99-5337 0.203-4649 ng/g for Cr, Ni, Zn, Cu, Cd, Pb and REEs, respectively. Simple correlation analysis indicated that a significant correlation (Cr: r = 0.5411**; Zn: r = 0.6352**; Cd: r = 0.6979**; Pb: r = 0.5537** and REEs: r = 0.5185** -0.6684**) was observed between the CaCl2-extractable metals in soil solution and that in Chinese cabbage. In addition, soil pH, organic matter (OM), and cation exchange capacity (CEC) also affect the phytoavailability. An empirical model was developed to express the combined effect of soil properties on the phytoavailability. The stepwise multiple regression analysis demonstrated that the phytoavailability of trace elements strongly correlated with the extractable fraction by CaCl2, total metal concentration in soils, and soil pH, OM, CEC. This model can describe approximately 75-95% of the variability of metal uptake and the r2 values ranged from 0.741** to 0.954**, which were much better than the single correlation analysis. For celery and cole, a strong correlation was obtained for Cr, Ni, Zn, Cu, Cd, La, Ce, Pr and Nd. For spinach and Chinese cabbage, however, a positive correlation was only observed for 1 and 3 metals, respectively. Generally, the developed empirical model can integrate the combined effects of soil properties, extractable metal fractions in soil solutions and plant species on the phytoavailability of metals to vegetables in the field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号