首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High time resolution aerosol mass spectrometry measurements were conducted during a field campaign at Mace Head Research Station, Ireland, in June 2007. Observations on one particular day of the campaign clearly indicated advection of aerosol from volcanoes and desert plains in Iceland which could be traced with NOAA Hysplit air mass back trajectories and satellite images. In conjunction with this event, elevated levels of sulphate and light absorbing particles were encountered at Mace Head. While sulphate concentration was continuously increasing, nitrate levels remained low indicating no significant contribution from anthropogenic pollutants. Sulphate concentration increased about 3.8 μg m−3 in comparison with the background conditions. Corresponding sulphur flux from volcanic emissions was estimated to about 0.3 TgS yr−1, suggesting that a large amount of sulphur released from Icelandic volcanoes may be distributed over distances larger than 1000 km. Overall, our results corroborate that transport of volcanogenic sulphate and dust particles can significantly change the chemical composition, size distribution, and optical properties of aerosol over the North Atlantic Ocean and should be considered accordingly by regional climate models.  相似文献   

2.
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.  相似文献   

3.
Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies.  相似文献   

4.
The concentrations of sulphur dioxide, nitric acid, nitrous acid, hydrogen chloride, ammonia and sulphate, nitrate, chloride and ammonium in aerosols were measured continuously for two years at the rural site of Rotenkamp near Braunschweig in south-east Lower Saxony. The level of air pollution registered is typical for rural areas near industrial areas in Central Europe. Long-range transport of polluted air masses from Saxony-Anhalt and Saxony affects air quality when high-pressure areas over Eastern Europe result in easterly winds and reduced vertical exchange due to low inversion layers.  相似文献   

5.
The sulphur content and sulphur isotopic composition of Sphagnum as well as anionic compositions and sulphur isotope ratios of rainwater inputs and bog waters have been measured at Thorne Moors, a raised bog in eastern England. Rainwater sulphate isotopic composition shows the sulphur input at this site to be dominated by anthropogenic pollution from fossil fuel burning. Strong depletion of sulphate (low SO4(2-)/Cl-) and enrichment in 34S in sulphate occurs at depth in the bog porewaters due to bacterial sulphate reduction. Some surface waters have low SO4(2-)/Cl-) and are 34S enriched due to removal of sulphate by downward diffusion into a sulphate-reducing zone. Other sites have high SO4(2-)/Cl-) which appears to result from oxidation of organically bound sulphur in the peat. Sulphur is present in Sphagnum at around 0.2% by weight and is depleted by 0 to -9 per thousand in the heavier 34S isotope compared to sulphate. Comparison with similar data from pristine coastal sites shows that sulphur incorporation into Sphagnum is enhanced in the polluted site (as Sphagnum sulphur concentrations are higher at lower total sulphur inputs) and that sulphur incorporation is accompanied by a smaller isotopic shift than in the pristine sites. The data support a model of preferential incorporation of partially reduced sulphur species (probably HSO3-) into Sphagnum. In pristine sites these are only available as oxidation products of sulphide formed by sulphate reduction and are 32S depleted. In polluted sites this source is augmented by sulphur(IV) species in atmospheric inputs and the resultant mixture is less depleted in 32S. Thus, in the polluted sites more HSO3- is available for uptake and the isotopic shift between Sphagnum and aqueous sulphur species is smaller.  相似文献   

6.
Mineral dust is an important aerosol species in the Earth’s atmosphere and has a major source within North Africa, of which the Sahara forms the major part. Aerosol Time of Flight Mass Spectrometry (ATOFMS) is first used to determine the mixing state of dust particles collected from the land surface in the Saharan region, showing low abundance of species such as nitrate and sulphate internally mixed with the dust mineral matrix. These data are then compared with the ATOFMS single particle mass spectra of Saharan dust particles detected in the marine atmosphere in the vicinity of the Cape Verde islands, which are further compared with those from particles with longer atmospheric residence sampled at a coastal station at Mace Head, Ireland. Saharan dust particles collected near the Cape Verde Islands showed increased internally mixed nitrate but no sulphate, whilst Saharan dust particles collected on the coast of Ireland showed a very high degree of internally mixed secondary species including nitrate, sulphate and methanesulphonate. This uptake of secondary species will change the pH and hygroscopic properties of the aerosol dust and thus can influence the budgets of other reactive gases, as well as influencing the radiative properties of the particles and the availability of metals for dissolution.  相似文献   

7.
Aerosol light-scattering in The Netherlands   总被引:2,自引:0,他引:2  
The relation between the (midday) aerosol light-scattering and the concentrations of nitrate and sulfate has been assessed at a site near the coast of the North Sea in The Netherlands. Midday was selected for the measurements because this is the time at which the aerosol is most effective in the scattering of solar radiation. Automated thermodenuders were used for the hourly measurement of the concentration of nitrate and sulfate with a lower detection limit of 0.1 μ m−3. The site is operational since October 1993. The first-year average dry aerosol light-scattering (measured with an integrating nephelometer at a wavelength of 525 nm) was 0.71 × 10−4 m1̄. In arctic marine air the aerosol light-scattering was a factor of 10 lower than the average value, in polluted continental air it was up to a factor of 10 higher. The ratio of the total aerosol light-scattering to the concentration of sulfate was 20 m2 g−1. The contribution of nitrate to the aerosol light-scattering was higher than that of sulfate in the winter and of about equal magnitude in the summer period. In November and December of 1993, the humidity dependence of the aerosol light-scattering was investigated. Two types of (continental) aerosol were found with respect to the humidity behavior. One type showed a significant increase in light-scattering at the deliquescence points of ammonium nitrate and ammonium sulfate, with that of ammonium nitrate the most pronounced. The second type of continental aerosol did not show deliquescence, but followed the typical humidity dependence of aerosol in a supersaturated droplet state. In this latter aerosol type, nitrate dominated over sulfate. It was concluded from the study that the aerosol light-scattering in The Netherlands, in particular its humidity dependence, is governed by (ammonium) nitrate.  相似文献   

8.
Tracing sources of atmospheric sulphur using epiphytic lichens   总被引:2,自引:0,他引:2  
The overall objective of this work was to measure the spatial variation of sulphur isotopic composition of lichens across the island of Newfoundland in order to assess the degree to which the atmosphere is being affected by long-range transport of anthropogenic sulphur from eastern North America, and/or local pollution sources. A contour map (based on over 80 composite samples of the lichen Alectoria sarmentosa) illustrates the spatial distribution of sulphur isotopic composition of the Newfoundland atmosphere. It shows a gradient of delta(34)S of sulphur in lichen, decreasing from the coast to the interior of the island. It also shows local anomalies corresponding to the city of St. John's, the Come-By-Chance Oil Refinery, mining areas and fossil-fuel powered pulp and paper mills in central and western Newfoundland. The study strongly suggests that the isotopic composition of sulphur in the Newfoundland atmosphere is influenced more by the ocean (sea salt sulphate) and local anthropogenic activities in the province, than by long-range transport of continental North American sulphate.  相似文献   

9.
Rime ice deposition and snow chemistry has been determined over a 4-year period on the summit of Cairngorm Mountain, NE Scotland. The direction of ice deposition reflected the dominant air mass movement over the summit. Sea salt concentrations in the rime ice were approximately 2.5 times greater than in snow deposited over the same period. Excess sulphate concentrations were double, and those of nitrate nearly four times higher. The direction of deposition influenced concentrations of excess sulphate and nitrogen species (nitrate and ammonium) in rime ice. The same directional effect was found in the snow chemistry indicating increased entrapment of pollutants, or a more polluted air mass, when it prevailed from a Southerly or Easterly direction. The potential surface reactions involving gaseous species of S and N may increase the ionic loading to the rime and reflect natural ionic enrichment of the rimed snowpack surface. Because of such phenomena, rime ice is proposed as a further indicator of winter air quality revealing important information on ionic interactions and total deposition flux measurement, especially at high altitudes.  相似文献   

10.
Aerosol samples were collected from Northwest China desert region (Minqin), coastal suburb (Qingdao) and interior of the Yellow Sea (Qianliyan) in spring and summer of 1995 and 1996. Samples were analysed for major components, carbon and sulphur. The results show that concentrations of aerosols change considerably in time and space. The crustal materials carried by cold front system increase notably the aerosol concentration (mass/unit vol.) over the Yellow Sea but reduce the percentage contribution of pollutants and sea-salt. The sea-salt and regional aerosols become dominant fractions in coastal atmosphere in summer when the dust storms are expired in source region and the Southeast monsoon starts in the Pacific Ocean.  相似文献   

11.
The purpose of this study is to explore the possible reasons accounting for elevated nitrate aerosol levels during high particulate days (HPD) in Taichung urban area of central Taiwan. To achieve this goal, simultaneous measurements of particulate and gaseous pollutants were carried out from September 2004 to April 2005 using an annular denuder system (ADS). The formation rate of NO2 to nitrate aerosol, calculated using the relevant chemical reactions, was employed to interpret enhanced nitrate aerosol concentrations during HPD. The observations showed that nitrate concentration during HPD was 14 times higher than that during low particulate days (LPD). The average formation rate during HPD was 4.0% h?1, which was 3.1 times higher than that during LPD. The quantitative analysis showed that the formation rate was mainly influenced by temperature and relative humidity. Lower temperature and higher relative humidity led much nitrate aerosol formation in HPD. Moreover, the residence time analysis of air masses staying over the studied area showed that the slow-motion air retained high nitrate concentrations due to more nitrate aerosol converted from the precursors in NOx-rich areas.  相似文献   

12.
Sulphate size distributions were measured at the coastal station of Mumbai (formerly Bombay) through 1998, during the Indian ocean experiment (INDOEX) first field phase (FFP), to fill current gaps in size-resolved aerosol chemical composition data. The paper examines meteorological, seasonal and source-contribution effects on sulphate aerosol and discusses potential effects of sulphate on regional climate. Sulphate size-distributions were largely trimodal with a condensation mode (mass median aerodynamic diameter or MMAD 0.6 μm), a droplet mode (MMAD 1.9–2.4 μm) and a coarse mode (MMAD 5 μm). Condensation mode sulphate mass-fractions were highest in winter, consistent with the high meteorological potential for gas-to-particle conversion along with low relative humidity (RH). The droplet mode concentrations and MMADs were larger in the pre-monsoon and winter than in monsoon, implying sulphate predominance in larger sized particles within this mode. In these seasons the high RH, and consequently greater aerosol water in the droplet mode, would favour aerosol-phase partitioning and reactions of SO2. Coarse mode sulphate concentrations were lowest in the monsoon, when continental contribution to sulphate was low and washout was efficient. In winter and pre-monsoon, coarse mode sulphate concentrations were somewhat higher, likely from SO2 gas-to-particle conversion. Low daytime sulphate concentrations with a large coarse fraction, along with largely onshore winds, indicated marine aerosol predominance. High nighttime sulphate concentrations and a coincident large fine fraction indicated contributions from anthropogenic/industrial sources or from gas-to-particle conversion. Monthly mean sulphate concentrations increased with increasing SO2 concentrations, RH and easterly wind direction, indicating the importance of gas-to-particle conversion and industrial sources located to the east. Atmospheric chemistry effects on sulphate size distributions in Mumbai, indicated by this data, must be further examined.  相似文献   

13.
Background, Aim and Scope A series of severe air pollution episodes in Europe and North America prior to 1960 have focused scientific and regulatory attention on the adverse effects of air pollution on human health. As a consequence of significant reductions in ambient air pollution levels in the intervening years, scientists and public health officials have become more concerned with the potential health effects of exposure to routine concentrations of air pollution. Several recent time series studies conducted world-wide have found relatively low levels of air pollutants that are below national standards were associated with adverse effects on mortality and morbidity. This study examined the effects of ambient air pollution indicators on the daily rate of pediatric hospital admissions for asthma in the Oklahoma City Metropolitan area from 2001-2003. Results: Negative binomial regression analysis revealed significant relationships between the total number of hospitalizations per day and the one-hour maximum NO2 level, the proportion of susceptible children < 5 years old, and the ratio of temperature to humidity. Discussion: This study of the total number of children aged ≤ 14 years old experiencing hospitalizations on a daily basis in the Oklahoma City area from 2001-2003 underscores factors other than ambient air pollution, especially when concentrations are low, affect hospitalizations for pediatric asthma. For example, information related to indoor air quality, health care, family history, and exposure to environmental tobacco smoke and other irritants are not obtainable. Yet, those factors are risk drivers for asthma. Similarly, health privacy requirements prevented obtaining data on physiological factors specific to each child such as differentials in airways functional capacity or other impairments influenced asthma exacerbation. This makes calculating relative risk inappropriate. Conclusions: Although ambient air pollution concentrations and meteorological conditions influence pediatric asthma hospitalizations, they are not the major predictors in the Oklahoma City metropolitan area. This is consistent with other research that finds limited effects associated with low levels for concentrations of the criteria pollutants.  相似文献   

14.
Airborne fine particle mass concentrations in Southern California have declined in recent years. Trends in sulfate and elemental carbon (EC) particle concentrations over the period 1982-1993 are consistent with this overall improvement in air quality and help to confirm some of the reasons for the changes that are seen. Fine particle sulfate concentrations have declined as a strict sulfur oxides (SOx) emission control program adopted in 1978 was implemented over time. Fine particle elemental (black) carbon concentrations have declined over a period when newer diesel engines and improved diesel fuels have been introduced into the vehicle fleet. Organic aerosol concentrations have not declined as rapidly as the EC particle concentrations, despite the fact that catalyst-equipped cars having lower particle emission rates were introduced into the vehicle fleet alongside the diesel engine improvements mentioned above. This situation is consistent with the growth in population and vehicle miles traveled in the air basin over time. Fine particle ammonium nitrate in the Los Angeles area atmosphere contributes more than half of the fine aerosol mass concentration on the highest concentration days of the year, emphasizing both the need for accurate aerosol nitrate measurements and the likely importance of deliberate control of aerosol nitrate as a part of any serious further fine particle control program for the Los Angeles area.  相似文献   

15.
The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the model accurately simulated soil solution concentrations for most plots as indicated by goodness-of-fit measures, although some of the intra-annual variation especially in nitrate and aluminium concentrations could not be reproduced. Model evaluations of two emission-deposition scenarios (current legislation and maximum feasible reductions) for the period 1970-2030 show a strong reduction in sulphate concentrations between 1980 and 2000 in the soil due to the high reductions in sulphur emissions. However, current legislation hardly reduces future nitrogen concentrations, whereas maximum feasible reductions reduces them by more than half. Maximum feasible reductions are also more effective in increasing pH and reducing aluminium concentrations, mostly below ‘critical’ values.  相似文献   

16.
Direct observation of the mixing state of aerosol particles in a coastal urban city is critical to understand atmospheric processing and hygroscopic growth in humid air. Morphology, composition, and mixing state of individual aerosol particles from Macao, located south of the Pearl River Delta (PRD) and 100 km west of Hong Kong, were investigated using scanning electron microscopy (SEM) and transmission electron microscopy coupled with energy-dispersive X-ray spectrometry (TEM/EDX). SEM images show that soot and roughly spherical particles are prevalent in the samples. Based on the compositions of individual aerosol particles, aerosol particles with roughly spherical shape are classified into coarse Na-rich and fine S-rich particles. TEM/EDX indicates that each Na-rich particle consists of a Na-S core and NaNO3 shell. Even in the absence of heavy pollution, the marine sea salt particles were completely depleted in chloride, and Na-related sulfates and nitrates were enriched in Macao air. The reason could be that SO2 from the polluted PRD and ships in the South China Sea and NO2 from vehicles in the city sped up the chlorine depletion in sea salt through heterogeneous reactions. Fresh soot particles from vehicular emissions mainly occur near curbside. However, there are many aged soot particles in the sampling site surrounded by main roads 200 to 400 m away, suggesting that the fresh soot likely underwent a quick aging. Overall, secondary nitrates and sulfates internally mixed with soot and sea salt particles can totally change their surface hygroscopicity in coastal cities.  相似文献   

17.
The German Federal Environmental Agency (Umweltbundesamt) currently runs a network of 17 air pollution monitoring stations in rural areas within the Federal Republic of Germany. Since 1982, daily bulk precipitation samples have been collected and analysed at five of these stations. As no changes in sampling and chemical analysis techniques have been introduced in this time period, an interpretation with respect to trends is possible. An increase in pH is most obvious at Deuselbach in the western part of Germany. It is related to a decrease in sulphate ions. Reduced SO2 emissions in the western part of Europe have resulted in decreasing ambient air concentrations mainly in the western part of Germany, whereas changes in concentrations close to the eastern border of West Germany were not as pronounced. Part of the decrease, however, was a consequence of three mild winters in sequence at the end of the period, with little easterly air flow. Estimated dry deposition fluxes of sulphur at 3 rural stations in West Germany were lower in 1988/1989 compared to 1980-1987 by 44-69%. Wet deposition showed between 8% increase and 25% decrease. The resulting reduction in total sulphur deposition ranged from 17-54%. Deposition via interception of fog droplets was not measured.  相似文献   

18.
The southeastern portion of North Carolina features a dense crop and animal agricultural region; previous research suggests that this agricultural presence emits a significant portion of the state's nitrogen (i.e., oxides of nitrogen and ammonia) emissions. These findings indicate that transporting air over this region can affect nitrogen concentrations in precipitation at sites as far as 50 mi away. The study combined nitrate nitrogen isotope data with back-trajectory analysis to examine the relationship between regional nitrogen emission estimates independent of pollutant concentration information. In 2004, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to determine potential sources of nitrogen in rainwater collected at an urban receptor site in Raleigh, NC. The delta 15N isotope ratio signatures of each sample were used to further differentiate between sources of the rainwater nitrate. This study examined the importance of pollution sources, including animal agricultural activity, and meteorology on rainfall chemistry as well as the implications in fine particulate matter (PM2.5) formation. Samples that transited the dense crop and animal (swine) agricultural region of east-southeastern North Carolina (i.e., the source region) had lower delta 15N isotope ratios in the nitrate ion (average = -2.1 +/- 1.7 per thousand) than those from a counterpart nonagricultural region (average = 0.1 +/- 3 per thousand.) An increase in PM2.5 concentrations in the urban receptor site (yearly average = 15.1 +/- 5.8 microg/m3) was also found to correspond to air transport over the dense agricultural region relative to air that was not subjected to such transport (yearly average = 11.7 +/- 5.8 microg/m3).  相似文献   

19.
A procedure is demonstrated that greatly expands the number of sources whose contribution to ambient particle levels can be followed separately within an aerosol processes trajectory model without significantly increasing the computational burden of the problem. Particles emitted from different sources within the same general class can be differentiated from each other with this technique; for example particles emitted by on-road diesel vehicles can be distinguished from particles emitted by diesel railroad locomotives, and particles emitted from identical sources at different locations can be distinguished from each other as well. The method developed is illustrated by application to the air quality situation in Southern California. The contributions of more than 50 types of air pollution sources to primary particle concentrations at Claremont, CA, are separated from each other by post-processing the output from the aerosol processes trajectory model for an externally mixed aerosol developed previously by Kleeman and Cass (1998, Atmospheric Environment 32, 2803–2816; 1999 Environmental Science and Technology, 33, 177–189).  相似文献   

20.
A Lagrangian dispersion model has been used to predict daily sulphate aerosol in 2006 at five UK rural measurement sites and hourly nitrate aerosol in April 2003 at Harwell (UK). The sensitivity of aqueous phase sulphate production to the meteorological input has been investigated. Large differences were found between cloud fraction and cloud liquid water output from the regional and mesoscale Met Office Unified Model. The impact on the sulphate aerosol was relatively small, with the mesoscale meteorology giving better results.Sulphate aerosol production in the aqueous phase was found to be very sensitive to modelled cloud pH. As the cloud becomes acidic sulphate production is greatly limited, conversely if the cloud is basic large amounts of sulphate aerosol are produced. A fixed model pH of 5.8 was found to produce better results than allowing the model to calculate pH which resulted in large over-predictions of measured sulphate aerosol in some episodes.Nitrate aerosol was not sensitive to cloud variables or pH, but showed a slight increase with 30% more ammonia emissions, and a slight decrease with 30% less ammonia.Sulphate production in model runs with fixed pH was not sensitive to changing ammonia emissions, however the sulphate production with modelled pH was very sensitive to plus or minus 30% ammonia. This work suggests that good modelling of ammonia is essential to correct estimation of aqueous phase sulphate aerosol if cloud pH is modelled. It is concluded that modelling to estimate the effect of reduced ammonia emission scenarios on future ambient aerosol levels should also take into account the neutralising effect of ammonia in cloud and hence the effect on aqueous phase production of sulphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号