首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Hydrogen (δ2H), carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotopes of tree rings growing in field conditions can be indicative of past pollution effects. The characteristic δ13C trend is a positive shift generally explained by invoking closure of stomata, but experimental studies suggest that increased rates of carboxylation could also generate such trends. In many cases the δ18O and δ2H values decrease in trees exposed to pollution and exhibit inverse coinciding long-term trends with δ13C values. However, some trees exposed to diffuse pollution and experimental conditions can show an increase or no δ18O change even if δ13C values increase. These diverse responses depend on how stress conditions modify physiological functions such as stomatal conductance, carboxylation, respiration, and perhaps water assimilation by the root system. Recent studies suggest that δ15N changes in trees can be caused by soil acidification and accumulation of anthropogenic emissions with isotopic signals deviating from natural N.  相似文献   

2.
Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ13C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ13C of the soil can be explained by the δ13C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ13C in the atmospheric deposition accounts for 28.2 % of the δ13C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ13C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.  相似文献   

3.
Trace elements (22) and stable isotope ratios (δ15N and δ13C) were analyzed in marine organisms from shallow (SW) and deep-water (DW) of the East China Sea to understand biomagnification and prey source of trace elements. In the benthic marine organisms from DW, δ15N values were negatively correlated with Ba, Cu, Ag, Mo, Sr, As, and Co concentrations. This may be due to the specific accumulation in lower trophic animals and/or the biodilution through the food web in DW. Relationships between δ15N and concentrations of Co, Cr, Bi, and Tl in fish and Ag, Bi, V, Hg, and Tl in crustaceans showed positive correlations, suggesting that trophic position was affecting the concentrations of those elements in phyla, with higher trophic animals retaining higher concentrations than the lower trophic animals. Positive correlations between δ13C and Rb were observed in marine organisms. Therefore, Rb may be a possible substitute of δ13C as tracer of prey source in the East China Sea although further investigation is required.  相似文献   

4.
A forensic approach was used to evaluate sediments from Portão Stream, including analysis of metals, carbon (C) and nitrogen (N) stable isotopes, and C:N ratios. Samples collected at various points located along the stream were tested in order to investigate a possible illegal leachate input. The studied stream is heavily impacted by sewage and industrial discharges from two cities along its course. Among the metals analyzed, chromium (Cr) was noticeably the main pollutant, showing the highest levels, above regulatory limits, downstream from some potential sources of effluents enriched with this metal. Isotope analyses revealed a general trend of depletion in the heavier isotope along the stream for C and N. The exception was one point near a hazardous waste landfill, where relatively more enriched δ13C and δ15N values were found. The isotope and metal analysis results indicated that this site was affected by a particular source, demonstrating the combination of these parameters could be used for the discrimination of sources in a heavily polluted stream. Nevertheless, further investigations are necessary to provide a comprehensive evaluation of the biogeochemical processes involved in the incorporation of leachate in sediments to use this analysis as evidence for the illegal leachate discharge.  相似文献   

5.
Silver (Ag) ions are among the most toxic metallic ions to aquatic biota. In southern Argentina, fish from Patagonian lakes have liver Ag concentrations [Ag] among the highest ever reported globally. Silver concentration in phytoplankton from Lake Moreno (1.82 ± 3.00 μg g−1 dry weight, DW) was found to be significantly higher than [Ag] in zooplankton (0.25 ± 0.13 μg g−1). Values in snails and decapods (0.60 ± 0.28 μg g−1 and 0.47 ± 0.03 μg g−1 respectively), were higher than in insect larvae (0.28 ± 0.39 μg g−1 for Trichoptera). We examined trophic transfer of Ag in the biota using stable nitrogen and carbon isotopes ratios (δ15N and δ13C respectively). Silver concentrations in the biota of Lake Moreno were not associated with any particular C source, as assessed by δ13C. Hepatic [Ag] significantly increased with trophic position, as measured by δ15N, within the brook trout sample set. Biodilution of Ag was observed between primary producers and small forage fish when whole body [Ag] was analyzed. Nevertheless, when considering whole food web biomagnification and hepatic [Ag] of top predator fish, a significant positive regression was found between [Ag] and trophic position, as measured by δ15N. The importance of species-specific and tissue-specific considerations to obtain more information on Ag trophodynamics than that usually presented in the literature is shown. To the best of our knowledge, this is the first study in assessing Ag trophodynamics and tissue-specific biomagnification in a whole freshwater food web.  相似文献   

6.
Nine heavy metals sampled from water, sediments, and aquatic organisms in the newly-formed wetlands of the Yellow River Delta (YRD) of China were analyzed to evaluate their concentrations and trophic transfer in food webs. The stable carbon (δ13C) and nitrogen (δ15N) isotopes were used to investigate trophic interactions. Results show that most of heavy metals detected in water and sediments are lower than that in Yangtze River Delta and Pearl River Delta. The longest food web is approximately 4 with the highest trophic level of birds. The difference of heavy metal concentrations between endangered Saunders’s Gull and other three kinds of protected birds is not obvious. Cd, Zn, and Hg were identified to have an increase with the trophic level (TL), while As, Cr, Cu, Mn, Ni and Pb show an opposite trend, however, the biomagnification of the selected nine heavy metals in the food webs is not significant.  相似文献   

7.
Concentrations and tissue distribution of organochlorine pesticides (OCPs) in different tissues of freshwater fish, silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis), collected from Poyang Lake, China’s largest shallow lake, and were studied. OCPs were detected with the observed concentrations ranging from 280.67 to 1,006.58 ng/g wet weight (ww) for bighead carp and from 67.28 to 930.06 ng/g ww for silver carp. Composition analysis demonstrated OCPs in both fish were from the same polluted environment, and then, the species-specific bioaccumulation might be mainly due to the different fish age as well as the different feeding habits elucidating from the stable carbon (δ13C) and nitrogen (δ15N) isotope analysis. Tissue distribution indicated that dietary intake was the major exposure route of OCPs for both fish and higher accumulation potency of OCPs by the hepatobiliary-related tissues (such as liver, kidney, bile, and heart). The higher metabolic activities of these tissues elucidating from the higher values of δ15N might be the potential-determined factor responsible for the tissue-specific accumulation.  相似文献   

8.
We combined stable isotope tracers of blood plasma, blood cells and egg contents with faecal analysis during pre-breeding and egg laying phases in two dipper species Cinclus cinclus and Cinclus mexicanus to determine the occurrence of dietary shifts during egg production and to assess consequences for egg contaminant loads. In both species, changes in δ13C (C. cinclus) or δ15N (C. mexicanus) in female plasma relative to red blood cells indicated a dietary shift during laying that was not observed in males. Eurasian dippers increased prey consumption as breeding approached, shifting from primarily trichopteran insect larvae to ephemeropterans and plecopterans. In American dippers, egg-laying females switched to feeding at a higher trophic level by consuming more fish. Eggs derived from higher trophic level diets contained more mercury (American dipper), polychlorinated biphenyls and some organochlorines, especially DDT metabolites. The results demonstrate how dietary changes during egg laying accompany the demands for egg production with consequences for contaminant deposition in avian eggs.  相似文献   

9.
Organophosphorus compounds (OPCs) and stable isotope ratios (δ13C and δ15N) were determined in 58 fishes belonging to 20 species collected from Manila Bay, the Philippines. OPCs were detected in most of the samples and found up to μg/g lw (lipid weight) level, suggesting their ubiquitous presence in the coastal marine environment of the Philippines. Higher levels (>1000 ng/g lw) of total OPCs were determined in yellowstriped goatfish, silver sillago, tripletail wrasse and bumpnose trevally indicates either their active uptake from ambient water or lower metabolic capacity of these species. Levels of triphenyl phosphate (TPhP) in demersal species showed a positive correlation with δ15N, indicating that TPhP was adsorbed onto the particle, settled down to the bottom sediment and accumulated through the benthic food web rather than the pelagic. Estimated dietary intake of OPCs in Manila Bay fishes were four to five orders of magnitude lower than the proposed reference dose (RfD).  相似文献   

10.
Here we synthesize key findings from a series of experiments to gain new insight on inter-plant competition between juvenile beech (Fagus sylvatica) and spruce (Picea abies) under the influence of increased O3 and CO2 concentrations. Competitiveness of plants was quantified and mechanistically interpreted as space-related resource investments and gains. Stable isotopes were addressed as temporal integrators of plant performance, such as photosynthesis and its relation to water use and nitrogen uptake. In the weaker competitor, beech, efficiency in space-related aboveground resource investment was decreased in competition with spruce and positively related to Δ13C, as well as stomatal conductance, but negatively related to δ18O. Likewise, our synthesis revealed that strong belowground competition for water in spruce was paralleled in this species by high N assimilation capacity. We suggest combining the time-integrative potential of stable isotopes with space-related investigations of competitiveness to accomplish mechanistic understanding of plant competition for resources.  相似文献   

11.
Mosses have been recognized as a useful tool for biomonitoring atmospheric deposition and assessing regional environment. This study was carried on whether the same moss growing in areas with identical regional atmospheric deposition while under different growing environments would have the same indicating signals.Similar variations in mean δ13C and δ15N signatures were found between mosses collected from five habitats, with an increasing sequence from mosses under canopies to epilithic mosses, indicating that habitats were potentially regulating δ13C and δ15N values of mosses. Dryer habitats (lower water availability) and input of more aerosol N were the main reasons for higher δ13C and δ15N values of mosses at open sites (especially for epilithic species), while more negative values of mosses under canopies were attributed to their wetter habitats and less uptake of aerosol N. Additionally, δ15N values not δ13C varied linearly with canopy thickness from −7.84‰ (1 m) to −4.71±0.7‰ (4 m), suggesting δ15N was more sensitive for indicating canopy retention.Consequently, isotopic data of mosses under different environments could not be compared for atmospheric deposition research with each other even collected at the same site. Moss δ13C and δ15N were affected not only by regional atmospheric N sources but also by their growing environments. δ15N of epilithic Haplocladium microphyllum at open sites can be taken as confident bio-indicator of atmospheric N deposition, which would deepen the application of stable nitrogen isotope of bryophytes in atmosphere–plant system study.  相似文献   

12.
Concentrations of organochlorines (OCs), brominated flame retardants (BFRs) and mercury (Hg) were measured in eggs of six seabird species breeding in the Gulf of St. Lawrence, Canada. Stable nitrogen (δ15N) and carbon (δ13C) isotopes were used as ecological tracers to measure trophic level and connectivity with benthos, respectively. Concentrations, patterns as well as ecological tracers varied significantly between species. The sum of polychlorinated biphenyls (ΣPCBs) was the most important group measured in all seabird species based on concentration followed generally by the sum of chlorinated pesticides (ΣCPs), the sum of brominated flame retardants (ΣBFRs) and finally total Hg (THg). ΣPCBs, ΣCPs and ΣBFRs increased with trophic level, whereas THg did not. Only ΣBFRs increased with a higher connectivity with the benthos. Seabird species resident to the Great Lakes-St. Lawrence ecosystem showed higher Hg and BFR levels than migratory species. Molt patterns were used to explain variations of contaminant levels.  相似文献   

13.
We investigated the concentrations of 22 essential and non-essential elements among a community of Procellariiformes (and their prey) to identify the extent to which trophic position and foraging range governed element accumulation. Stable isotope analysis (SIA) was used to characterise trophic (δ15N) and spatial patterns (δ13C) among species. Few consistent patterns were observed in element distributions among species and diet appeared to be highly influential in some instances. Arsenic levels in seabird red blood cells correlated with δ15N and δ13C, demonstrating the importance of trophic position and foraging range for arsenic distribution. Arsenic concentrations in prey varied significantly across taxa, and in the strength of association with δ15N values (trophic level). In most instances, element patterns in Procellariiformes showed the clearest separation among species, indicating that a combination of prey selection and other complex species-specific characteristics (e.g. moult patterns) were generally more important determining factors than trophic level per se.  相似文献   

14.
Herbarium mosses from 1879–1881, 1973–1975 and 2006–2007 were used to investigate the historical changes of atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) at a remote site in Northern Spain. Natural abundance of nitrogen and carbon isotopes was also measured in order to assess the evolution of emissions from anthropogenic sources. Nitrogen and PAH concentrations as well as δ13C and δ15N ratios were significantly higher in 19th century samples compared to present century samples. Moreover, PAH distribution varied over the centuries, with the trend towards enrichment in light PAHs. The carbon, nitrogen and PAH concentrations measured in the mosses tally with the historical evolution of anthropogenic emissions in the area, mainly influenced by changes in economic activities, domestic heating and road traffic density. Mosses provided by herbaria seem to offer the possibility of studying long-term temporal evolution of atmospheric PAH deposition.  相似文献   

15.
Vegetation samples from King George Island, Antarctica (62°05'S, 058°23'W) were collected in the austral summer of 2004-2005. Lichens (Usnea aurantiaco-atra and Usnea antarctica), mosses (Sanionia uncinata, Syntrichia princeps and Brachytecium sp.), and one angiosperm (Colobanthus quitensis) species were analyzed for persistent organic pollutants as well as δ(13)C and δ(15)N stable isotopes. The following contaminants were found above the method detection limit (MDL): HCB (0.141-1.06 ng g(-1) dry weight), HCHs (相似文献   

16.
To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3–3.8 μg m?3), in which NH4+ is the major species (78%) with lesser contribution from NO3? (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.  相似文献   

17.
Monthly nitrogen isotopes of ammonium and nitrate in wet deposition in the city of Guangzhou, and the causes of their variability, are reported in this paper. Nitrate δ15N showed nearly constant values around zero in the dry season (October to April), but oscillating values from negative to positive in the rainy season (May to September). By contrast, ammonium δ15N displayed lower values during the rainy season than in the dry season. The rural area north of the city was considered as the prominent source of ammonium and nitrate in spring and early summer (May and June), as suggested by their concurrent negative isotopic trends and higher NH4+/NO3? ratios. From July to September, different dominating sources from the city, i.e., fossil fuel combustion for nitrate, and sewage and waste emission for ammonium, caused disparate δ15N trends of the two species, showing positive nitrate δ15N, but still negative ammonium δ15N. During the cool dry season, the high values of ammonium δ15N and concurrently low NH4+/NO3? ratios suggested the decrease in NH3 volatilization and relatively important thermogenic origin of ammonium, but the intermediate nitrate δ15N values around zero may be a result of a balanced emission of NOx from the city and the rural areas. The isotopic effects of chemical conversion of NOx to nitrate and washout of nitrate were ruled out as significant causes of nitrate δ15N variability, but ammonium washout, during which 15N is assumed to be preferentially removed, may partly contribute to the ammonium δ15N variability.  相似文献   

18.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   

19.
Nitrogen isotopic composition of new, middle-aged and old camphor leaves in upper and lower canopies has been determined in a living area, near a motorway and near an industrial area (Jiangan Chemical Fertilizer Plant). We found that at sites near roads, more positive δ15N values were observed in the camphor leaves, especially in old leaves of upper canopies, and ?δ15N = δ15Nupper − δ15Nlower > 0, while those near the industrial area had more negative δ15N values and ?δ15N < 0. These could be explained by two isotopically different atmospheric N sources: greater uptake from isotopically heavy pools of atmospheric NOx by old leaves in upper canopies at sites adjacent to roads, and greater uptake of 15N-depleted NHy in atmospheric deposition by leaves at sites near the industrial area. This study presents novel evidence that 15N natural abundance of camphor leaves can be used as a robust indicator of atmospheric N sources.  相似文献   

20.
Stable nitrogen and oxygen isotope ratios of nitrate (δ15N-NO3 and δ18O-NO3) have recently been used to identify nitrogen sources in water environments. However, there have been no investigations designed to determine nitrate isotopes in non-point sources in urban areas for evaluating the impact of surface deposits on nitrogen in surface runoff. In this study, we collected rainwater, surface runoff and surface deposits (road dust, roof dust and soil) to evaluate the nitrogen sources in surface runoff using nitrate isotopes. There were no large differences in δ15N-NO3 among rainwater (−0.3‰ to 1.5‰), surface runoff (−2.7‰ to 0.4‰), leachates from road dust (−5.8‰ to 6.2‰) and soil (−11.5‰ to 0.6‰). In contrast, the δ18O-NO3 in surface runoff (28.5-47.9‰) was lower than that in rainwater (62.7-78.6‰), and higher than that in leachates from road dust (6.1-27.6‰) and soil (−1.1‰ to 6.6‰). δ18O-NO3 is a useful indicator for evaluating the NO3-N sources in surface runoff. Using this indicator, NO3-N from road dust was estimated to account for more than half of the NO3-N in surface runoff. This is consistent with a result based on a comparison of their loads per unit surface between rainwater and surface runoff, which also showed that most of the nitrogen in surface runoff was derived from surface deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号