首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Mussels are commonly used to monitor metal pollution despite high inter-individual variability in tissue concentrations. In this study, influences of body size, condition index and tidal height on concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were investigated. Body weight was inversely related to metal concentrations and for Cd, Mn, Pb and Zn the regression was affected by tidal height. Except for As, Fe and Mn metal concentrations were inversely related to physiological status though no differences between essential and non-essential metals were obvious. After correcting for body size, tidal height was related positively to As, Cd and Zn, negatively related to Cu, Fe and Mn while Co, Cr, Ni and Pb were independent of tidal height. The study recommends stringent measures during sampling for biomonitoring or metal concentrations at each location must be normalized to a common body size, CI and tidal height.  相似文献   

2.
To examine the Cd, Hg, Ag, and Zn accumulation in the green mussel Perna viridis affected by previous exposure to Cu, Ag, or Zn, the dietary metal assimilation efficiency (AE) and the uptake rate from the dissolved phase were quantified. The mussel's filtration rate, metallothionein (MT) concentration, and metal tissue burden as well as the metal subcellular partitioning were also determined to illustrate the potential mechanisms underlying the influences caused by one metal pre-exposure on the bioaccumulation of the other metals. The green mussels were pre-exposed to Cu, Ag, or Zn for different periods (1-5 weeks) and the bioaccumulation of Cd, Hg, Ag, and Zn were concurrently determined. Pre-exposure to the three metals did not result in any significant increase in MT concentration in the green mussels. Ag concentration in the insoluble fraction increased with increasing Ag exposure period and Ag ambient concentration. Our data indicated that Cd assimilation were not influenced by the mussel's pre-exposure to the three metals (Cu, Ag, and Zn), but its dissolved uptake was depressed by Ag and Zn exposure. Although Hg assimilation from food was not affected by the metal pre-exposure, its influx rate from solution was generally inhibited by the exposure to Cu, Ag, and Zn. Ag bioaccumulation was affected the most obviously, in which its AE increased with increasing Ag tissue concentration, and its dissolved uptake decreased with increasing tissue concentrations of Ag and Cu. As an essential metal, Zn bioaccumulation remained relatively stable following the metal pre-exposure, suggesting the regulatory ability of Zn uptake in the mussels. Zn AE was not affected by metal pre-exposure, but its dissolved uptake was depressed by Ag and Zn pre-exposure. All these results indicated that the influences of one metal pre-exposure on the bioaccumulation of other metals were metal-specific due to the differential binding and toxicity of metals to the mussels. Such factors should be considered in using metal concentrations in mussel's soft tissues to evaluate the metal pollution in coastal waters.  相似文献   

3.
The present field study, conducted during the spawning period (April/May) of European chub (Squalius cephalus L.) from the Sava River in Croatia, indicates that seasonal changes of fish physiological state might cause variability in gastrointestinal metal (Cd, Cu, Fe, Mn and Zn), total cytosolic protein and metallothionein (MT) levels. During the period of fish spawning and increased metabolic activity, a significant relationship with chub hepatosomatic index was evident for Fe and Mn in gastrointestinal tissue (r?=?0.35 and 0.26, respectively) and in cytosolic fraction (r?=?0.32 and 0.41, respectively) and for Zn and Fe in the gut content (r?=?0.36 and 0.31, respectively). Total cytosolic protein and MT concentrations followed the same spatial distribution as Fe and Mn in all gastrointestinal fractions and as Zn in the sub-cellular fractions, with higher levels at upstream locations. Due to the role of essential metals in metabolic processes and gonad development, increased feeding and spawning activity in April/May resulted in higher gastrointestinal essential metal (Fe, Mn and Zn) and MT concentrations, which probably follow an increase in Zn concentrations, known as the primary MT inducer. Therefore, biotic factors should be considered as important confounding factors in metal exposure assessment, while their influence on gastrointestinal metal and protein levels should be interpreted depending on the season studied.  相似文献   

4.
The concentrations of Cd, Co, Cu, Cr, Fe, Hg, Mn, Ni, Pb, Sn, Ti and Zn were analyzed by AAS, ICP MS and AFS in soft tissues and byssal threads of Mytilus galloprovincialis from Masan Bay and Ulsan Bay, Korea. Spatial variations in metal concentrations were found. The levels of Cd, Pb, Hg, Cu, Zn, Co and Mn were very high in the mussels from Ulsan Bay (Sts. U1, U2) and comparable with elevated concentrations of these elements in Mytilus sp. reported to date for other geographical areas. Seasonal differences in some metal concentrations were also observed. These variations may be caused by factors such as: a large difference in seawater temperature, food supply for the mussel population and/or freshwater runoff of particulate metal to the coastal water and weight changes brought about by gonadal development and the release of sexual products. Pb, Cu, Zn, Co, Ni, Fe and Mn were more enriched in byssal threads than in the soft tissues, hence the byssus seems to be more sensitive in reflecting the availabilities of trace metals in the ambient waters. Concentrations of trace metals varied with respect to the size of mussels and season, depending on many factors like sexual development, and seawater temperature, etc. The levels of some trace metals in seawater, especially in suspended matter were correlated significantly with those in soft tissues and byssal threads. There were spatial variations in metal concentrations in the soft tissue and byssus attributed to different sources of trace elements located near the sampling sites. There were significant relationships between concentrations of some metals (Cd, Cu, Pb, and Zn) in mussel soft tissues and byssal threads and suspended matter. This suggests that M. galloprovincialis can be used as a sensitive biomonitor for the availabilities of trace elements in the coastal waters off Korea.  相似文献   

5.
This study assesses the applicability of a sentinel fish species as a biomonitor of metal pollution. Gudgeon (Gobio gobio) were collected from 14 sites in metal polluted lowland rivers in Flanders, including a clear Cd and Zn pollution gradient. Fish tissues were analysed for Cd, Cr, Cu, Ni, Pb and Zn. Metal levels in organs were related to levels in water and sediment. At some sites Cd and Zn levels were up to 50 times higher compared to reference values and literature. Significant relationships between Cd and Zn in fish tissue and environmental levels were found, especially in the pollution gradient where up to 70% of the observed variation could be described. Condition factor differed significantly among the sampling sites but could not be directly related to the environmental metal levels. Nevertheless, in the pollution gradient, threshold tissue concentrations could be defined above which the condition factor was always low.  相似文献   

6.
This study was designed to compare the metallothionein (MT) response capacity of two freshwater bivalves, Corbicula fluminea and Dreissena polymorpha, along an environmental gradient of polymetallic pollution. The bivalves were transplanted into 4 stations in southwestern France, with a cadmium and zinc pollution gradient. MT and metal concentrations were measured in the soft bodies of the clams and mussels over 2.5 months. In the zebra mussels, variations in MT concentrations were strictly correlated to progressive Cd and Zn bioaccumulation. In contrast, the faster response in the clams appeared positively correlated to Cd accumulation only, with the activation of efficient detoxification mechanisms which limited Cd bioaccumulation and reduced Zn concentrations over time. Nevertheless, despite stronger metal accumulation factors in D. polymorpha, C. fluminea revealed higher sensitivity of MT response along the pollution gradient.  相似文献   

7.
The aim of this study was to survey the alluvial plains of the Sea Scheldt river in Belgium for the presence of old sediment-derived soils, and to appraise the heavy metal contamination at these sites. Historically, sediments of periodical dredging operations have been disposed in the alluvial plain without concern for the potential presence of contaminants. Up to 96% of the areas that were affected by sediment disposal (ca. 120 ha) was found to be polluted by at least one of the metals Cd, Cr, Zn or Pb. Concentrations of Cd, Cr and Zn were, in 10% of the cases, higher than 14, 1400 and 2200 mg/kg DM, respectively. Based on the Flemish decree on soil sanitation, Cu and Ni concentrations were of less environmental concern on any site. The pollution in the Sea Scheldt alluvial plain nevertheless is lower than for the Upper Scheldt alluvial plain. The sediment-derived soils in the most upstream part near Ghent were used for disposal of sediments from dredging operations elsewhere. Metal concentrations were explored and both spatial and temporal trend were analysed. The pollution levels encountered warrant caution as most of the soils affected by historical dredged sediment disposal are currently in use for pasture.  相似文献   

8.
Biomonitoring of trace metals in a mine-polluted estuarine system (Spain)   总被引:3,自引:0,他引:3  
Morillo J  Usero J  Gracia I 《Chemosphere》2005,58(10):1421-1430
In this paper, we examine metal concentrations in the water and in the crustacean Balanus balanoides from the Huelva estuary, one of the most polluted estuaries in Europe. Metal levels in waters are very high, especially those of Zn, Fe and Cu. Zn presents the highest concentrations, with a mean value of 690 microg l-1 in 2001 and 301 microg l-1 in 2002. As the water flows down through the estuary toward the sea, the metal concentrations drop sharply and the pH rises. The metal concentrations in balanoides tissues are, in general, very high, undoubtedly due to the high metal pollution of the water where it lives. Metal concentrations in Balanus balanoides tissues behave similarly to those in the water, reaching maximums in the upper part of the estuary and diminishing as we approach the sea. The element that reaches the highest levels in Balanus balanoides is Zn, with a mean value of 54.6 g kg-1 in 2001 and 29.9 g kg-1 in 2002, followed by Cu and Fe. There is a significant correlation (p<0.01) for concentrations of Cd, Cu, Fe, Mn, Ni and Zn in Balanus balanoides relative to their concentration in waters. Barnacles showed a great capacity to accumulate metals, especially Zn, Cu and Fe. Based on the results obtained, we can conclude that Balanus balanoides is a good tool for monitoring trace metals in the Huelva estuary.  相似文献   

9.
Zinc, Cu, Cd, Pb, Ag, Ni, Co, Cr, Fe and Mn concentrations in some tissues of crabeater seal (Lobodon carcinophagus), leopard seal (Hydrurga leptonyx) and Weddell seal (Leptonychotes weddelli) from the Antarctic were determined. Distinct inter-tissue differences in metal concentrations in seals were observed; liver contained maximum levels of Zn, Cu, Ag and Mn, whilst kidney showed the highest levels of Cd, Ni and Co. Muscle was characterized by low concentrations of all the elements analyzed. The metal concentrations in the vertebrates analyzed were compared with those for organisms originating from various aquatic areas. Significant correlations were found between the levels of several of the metals analyzed, e.g. between renal and hepatic concentrations of Zn and Cd. Strong relationships between the hepatic concentrations of some metals were found, e.g. Cd-Zn. These two metals also showed a significant coassociation in their renal concentrations. The slope of the regression line for renal Cd/Zn was about three times higher than the hepatic one and this may reflect a relatively high Cd exposure, probably from specific food (squid and krill) provenance, of the seals analyzed.  相似文献   

10.
We investigated how host factors (species, age, gender) modulated Cd, Pb, Zn, and Cu concentrations, metallothionein levels (MTs) and their relationships in 7 sympatric small mammal species along a pollution gradient. Cd concentrations in liver and kidneys increased with age in all species. Age effect on other metals and MTs differs among species. Gender did not influence metal and MT levels except in the bank vole. Three patterns linking internal metal concentrations and MTs were observed along the gradient: a low metal accumulation with a (i) high (wood mouse) or (ii) low (bank vole) level of MTs accompanied by a slight or no increase of MTs with Cd accumulation; (iii) an elevated metal accumulation with a sharp increase of MTs (common and pygmy shrews). In risk assessment and biomonitoring perspectives, we conclude that measurements of MTs and metals might be associated because they cannot be interpreted properly when considered separately.  相似文献   

11.
Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the soft tissue of Crassostrea iridescens and the associated surface sediments (bulk and bioavailable metal concentrations) from an area influenced by a sewage outfall in Mazatlán Bay (southeast Gulf of California), were determined by atomic absorption spectrophotometry. Significant spatial differences in metal concentrations in both the bulk and bioavailable forms in the sediments were identified. An enrichment of Cu, Ni, Pb and Zn in sites located on a south-north transect was detected indicating a dominant influence of the sewage outfall toward the north. C. iridescens accumulated more Zn, Cu, Ni, Fe, Cd; and less Mn, Cr and Pb than were bioavailable in the sediments, as measured using conventional extraction analysis. The degree of enrichment and the bioavailable metal concentrations in the sediments of the south portion of Mazatlán Bay is discussed. The potential ability of C. iridescens as a biomonitor of metallic pollutants is postulated.  相似文献   

12.
Mussels (Mytilus galloprovincialis), clams (Venerupis decussatus) and oysters (Crassostrea gigas) were sampled seasonally during 2004-2005, from different coastal environments of Morocco in order to measure their accumulated heavy metal concentrations. The concentrations of Hg and Pb were determined by AFS and ICP-MS methods, respectively, whilst the remaining metals (Cd, Cr, Cu, Mn, Zn and Ni) were quantified by AAS. The soft tissue concentrations of the mussels were on average 7.2 mg kg(-1) (Cd), 9.6 mg kg(-1) (Pb), 0.6 mg kg(-1) (Hg), 26.8 mg kg(-1) (Cu), 8.8 mg kg(-1) (Cr), 292 mg kg(-1) (Zn), 20.8 mg kg(-1) (Mn) and 32.8 mg kg(-1) (Ni). The highest tissue heavy metal concentrations were recorded in the south from the industrial area of Jorf Lasfar. The relationships between metal concentration and season in each species showed very similar annual profiles with a peak observed around spring-summer. Statistical analysis indicated that different species showed different bioaccumulation of metals depending on study site and season.  相似文献   

13.
Chen CW  Kao CM  Chen CF  Dong CD 《Chemosphere》2007,66(8):1431-1440
The distribution, enrichment, and accumulation of heavy metals in the sediments, especially those at the vicinity of tributary estuaries of Kaohsiung Harbor, Taiwan were investigated. Sediment samples from six locations in the Kaohsiung Harbor were collected quarterly in the period from 2002 to 2005 and characterized for metal content (e.g., Hg, Pb, Cd, Cr, Cu, Zn and Al), water content, organic matter, total nitrogen, total phosphorous, total grease, and grain size. Results showed that metal concentrations varied from 0.58 mg kg(-1) for Cd to 596 mg kg(-1) for Zn. Metal concentrations at the vicinity of river mouths were higher than those at other locations. All heavy metals studied, except Cr, had relatively high enrichment factors and geo-accumulation indices in the estuaries. Moreover, metal concentrations correlated closely to the physical-chemical properties of the sediments, which strongly suggested the influence of industrial and municipal wastewaters discharged from the neighboring industrial parks and river basins. Results would help develop strategies for pollution control and sediment remediation of Kaohsiung Harbor.  相似文献   

14.
2006-2007年采暖季、风沙季和非采暖季分别在抚顺市的6个采样点采集PM10样品,用等离子体原子发射光谱(ICP-AES)法测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量,并用地质累积指数对其污染状况进行初步评价。结果表明:(1)从PM10中元素在不同采样点的含量看,抚顺市PM10中Ti、Mn、Mg、Cu、Zn、Pb、Cr、Ni、Co这9种元素在各采样点间的差别较大;Al、Ca、Na、K、As、Cd、Fe、V这8种元素差别较小。(2)从PM10中元素在不同采样季的含量看,抚顺市PM10中Mn、Mg含量的季间差别较大,其余15种元素季间差别较小。(3)Zn、Cd污染较重;Ti、Al、Mg、Ca、Na、K、As、Fe和V污染较轻;其他6种元素在6个采样点和3个采样季污染程度差别较大。(4)水库采样点各元素污染级别均不是最高;新华采样点PM10中Cu、Zn、Pb、Cr、Ni、Co、Cd污染级别均较高。(5)3个采样季PM10中Cd、Zn污染均较重,属于重度或严重污染;在采暖季PM10中Cu、Pb、Cr的地质累积指数较风沙季、非采暖季大;在非采暖季PM10中Mn、Co受到的污染比采暖季和风沙季稍严重。  相似文献   

15.
In autumn 1986, plants and soil were collected from the lower and the higher salt marsh zones of salt marshes along the Dutch coast. The main purpose was to get an overview of Zn, Cu and Cd concentrations in six dominant species of salt marsh plants. The roots and shoots of the plants were analysed for Zn, Cu and Cd. The highest heavy metal concentrations were found in plants collected from salt marshes near harbour areas and/or that are known to receive contaminated fluvial sediment. Dicotyledonous plant species tended to have similar heavy metal concentrations in roots and shoots, whereas in monocotyledonous species the concentrations in the roots were two to three times higher than in the shoots. Differences in accumulation in the roots between elements and between plant species were found. Cd was accumulated more than Zn or Cu. Triglochin maritima shows a low Cd uptake by roots, whereas Spartina anglica and Scirpus maritimus tend to accumulate it. The fraction of soil particles smaller than 63 microm, loss on ignition and Zn, Cu and Cd concentrations were determined in soil samples. The highest Zn, Cu and Cd concentrations in the soil were found at salt marshes in the Western Scheldt area and were nine, five and 20 times higher than background levels, respectively.  相似文献   

16.
Using mainly United Kingdom estuaries as examples, various factors governing the bioavailability, bioaccumulation and biological effects of heavy metals in sediment-dominated estuaries are reviewed. Estuaries and metals primarily discussed include the Mersey (Hg, methylmercury; Pb, alkyllead), the Loughor (Cr, Sn), the Severn (Ag, Cd), the Fal (As, Cu, Sn, Zn), Poole Harbour (Cd, Hg, Se, tributyltin) and Southampton Water (tributyltin). Concentrations and bioavailabilities of metals in estuarine sediments depend on many different processes. Examples include (1) mobilisation of metals to the interstitial water and their chemical speciation, (2) transformation (e.g. methylation) of metals including As, Hg, Pb and Sn (3) the control exerted by major sediment components (e.g. oxides of Fe and organics) to which metals are preferentially bound, (4) competition between sediment metals (e.g. Cu and Ag; Zn and Cd) for uptake sites in organisms, and (5) the influence of bioturbation, salinity, redox or pH on these processes. Under field conditions, identification of dominant processes can be achieved by observing the goodness of fit between metal concentrations in ubiquitous deposit-feeding species and levels in various types of sediment extract over a wide spectrum of sediment types. Factors of more local importance are often indicated by the marked deviation of some points from otherwise excellent relationships. For example, points lying above the line relating tissue Sn concentrations in the clam Scrobicularia plana to those in 1 n HCl extracts of sediments were found to reflect the accumulation of tributyltin, a more readily bioavailable form of Sn. In the same species, unexpectedly high tissue-Cu concentrations were characteristic of very anoxic in sediments and tissue And As and Pb concentrations were suppressed in sediments having high concentrations of Fe oxides. Under field conditions, examples of deleterious effects on benthic organisms that can be attributed to specific metallic pollutants are comparatively rare. Effects of tributyltins from antifouling paints on oysters and neogastropods have been documented and their toxicity has undoubtedly led to environmental degradation in many UK estuaries and coastal areas. In estuaries contaminated with metal-mining wastes, the effects of Cu and Zn on species distribution can be observed, but they are generally less obvious than would be predicted from experimental data. Effects are ameliorated by the induction of metal tolerance mechanisms in some species and in others by the appearance of tolerant strains. The induction of metal detoxification systems involving the formation of granules or metal-binding proteins leads in some species to tissue concentrations that are orders of magnitude higher than normal. For example, high concentrations of Cd and Ag have been found in some species from the Severn Estuary, although there is no unequivocal evidence that either metal has caused deleterious effects on benthic populations. On the other hand, experimental studies with Ag, Cd, Cr, Cu, Hg and Zn show that they are toxic to some species at environmentally realistic levels. Since pollutants rarely occur singly, it is likely that in many moderately contaminated estuaries metals contribute to the stress to organisms caused by substances requiring detoxification. There has been much speculation over the years concerning the biomagnification of metals with increasing trophic levels along food chains. Whilst animals having higher metal concentrations than their prey are sometimes found, the only consistent evidence of biomagnification concerns methylmercury. When estuarine birds are considered, there are relatively few instances in which deleterious effects can unequivocally be attributed to metals or their compounds. However, the Mersey bird kill was attributable to alkyllead pollution from industry. Among other organometals, methylmercury has proved toxic to birds but, so far, no evidence for the toxicity of tributyltin has been reported. However, the compound may have affected bird populations through its effects on the abundance of prey organisms, particularly estuarine molluscs. Of the inorganic forms of metals, Pb in the form of shot has caused problems in many areas and Cd, Hg and Se are suspected of causing toxic effects. There is little field evidence that birds have been affected by Ag, As, Cr, Cu or Zn individually. On the other hand, it is difficult to exclude the possibility that, additively, these metals may produce a significant effect. In part, the lack of evidence reflects the fact that relatively little research has been done. There is scope for more work on metals and organometals in estuarine birds, particularly with regard to their metabolism and their effects on juveniles and individuals subjected to stresses such as starvation.  相似文献   

17.
Accumulation of Zn, Cu, Pb and Cd was studied in snails fed for 120 days on diets contaminated with each metal separately and with all metals mixed together. The concentrations of Zn in food were in the range 39 to 12 200 mg kg(-1), Cu 9-1640 mg kg(-1), Pb 0.4-12 700 mg kg(-1), and Cd 0.16-146 mg kg(-1) on a dry weight basis. At the highest concentrations of all metals the consumption rates decreased significantly. For the remaining concentrations, Zn and Cu were accumulated in soft tissue in proportion to their concentrations in food. The lowest treatments of Pb and Cd did not cause any increase in soft tissue concentrations of these metals but at average treatments, a clear increase was observed. Copper was accumulated especially efficiently, exceeding concentrations in food throughout the whole range of treatments. Except for the lower end of experimental treatments, Zn was accumulated approximately in direct proportion to its concentration in the diet. Lead was the most efficiently regulated metal, with soft tissue concentrations always substantially lower than in food. Approximately 60% of Zn, 90% of Cu, 43% of Pb and 68% of Cd on average was assimilated from food. The assimilation efficiency of food alone was ca 74%. The concentrations of metals in shells increased significantly with exposure, but (with one exception) the concentrations in shells did not exceed 5% of those found in soft tissue. We argue that snails are more important as agents of food-chain transport of Cu and Cd, than of Zn or Pb. Our results indicate also that snails are not able to deposit significant quantities of metals in their shells, at least during the time scale of our laboratory experiment.  相似文献   

18.
The potential of Corbicula fluminea (Müller) as an indicator for trace metal pollution was investigated. Laboratory experiments show that Corbicula has the capability to accumulate and eliminate trace metals in relation to their concentrations in ambient water. However, an effect of individual size was observed. Seasonal variations in the concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn in Corbicula, water and particulate matter from the upper section of the Shatt al-Arab River were studied. Sediment samples were also analysed. Metal concentrations were determined by means of flameless AAS. It was found that Corbicula is a suitable bio-indicator for monitoring of trace metal pollution. Metal concentrations in Corbicula tissues correlated better with their corresponding concentrations in particulate matter than with the dissolved form. Temporal variations in metal concentrations were attributed to several factors, including fluctuations in metal inputs, and in geochemical and hydrological characteristics of the water. The obtained levels of trace metals were comparable to those reported for control sites, with the exception of Cd, Cu and Zn whose concentrations were higher in both Corbicula and particulate matter.  相似文献   

19.
Concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in macroalgae samples collected from the Turkish Coast of the Black Sea. Certain algae species were chosen among the green, brown and red algae species at Sile and Sinop sampling stations from 1998 to 2000. In general, as regards the influence of the collection sites on the whole metal accumulation, Sinop is considered to be more polluted than Sile. The concentrations of the heavy metals in Cystoseira barbata algae are compared with previous studies in the same stations. The results showed that all metal levels have gradually decreased during past years. At the same time, Cd, Co, Cr, Cu, Fe, Ni and Pb levels in the present study are lower than in Bosphorus and Marmara Sea algae. However, Mn and Zn concentrations are higher than Bosphorus but lower than at Marmara. According to these findings the heavy metal pollution decreased in Turkish Coast of the Black Sea during the years investigated.  相似文献   

20.
Cadmium (Cd), copper (Cu), mercury (Hg), selenium (Se) and zinc (Zn) were determined in the liver, kidney and muscle of 29 loggerhead turtles, Caretta caretta, from the South Tyrrhenian Sea (Western Mediterranean). No significant differences (p>0.05) were detected between males and females. Trace element concentrations were not influenced by the size of the specimen except Se in the liver, which was negatively correlated with the curved carapace length (p<0.001). Muscles generally displayed the lowest trace element burdens, with the exception of Zn which contained concentrations as high as 176 microgg-1dwt. Kidneys displayed the highest Cd and Se mean concentrations (57.2+/-34.6 and 15.5+/-9.1 microgg-1dwt, respectively), while liver exhibited the highest Cu and Hg levels (37.3+/-8.7 and 1.1+/-1.7 microgg-1dwt, respectively). Whichever tissue is considered, the toxic elements had elevated coefficients of variation (i.e. from 60% to 177%) compared to those of the essential ones (i.e. from 14% to 65%), which is a consequence of homeostatic processes for Cu, Se and Zn. Globally, the concentrations of Hg remained low in all the considered tissues, possibly the result of low trophic level in sea turtles. In contrast, the diet of loggerhead turtles would result in a significant exposure to Cd. Highly significant correlations between Cd and Cu and Zn in the liver and kidney suggest that efficient detoxification processes involving MT occur which prevent Cd toxicity in loggerhead turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号