首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography–mass spectrometry (GC–MS) methodology.Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5–25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed.The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.  相似文献   

2.
This paper presents the regulated and unregulated exhaust emissions of a diesel passenger vehicle, operated with low sulphur automotive diesel and soy methyl ester blends. Emission and fuel consumption measurements were conducted under real driving conditions (Athens Driving Cycle, ADC) and compared with those of a modified New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, equipped with an indirect injection diesel engine, fuelled with diesel fuel and biodiesel blends at proportions of 5, 10, and 20% respectively. Unregulated emissions of 11 polycyclic aromatic hydrocarbons (PAHs), 5 nitro-PAHs, 13 carbonyl compounds (CBCs) and the soluble organic fraction (SOF) of the particulate matter were measured. Qualitative hydrocarbon analysis was also performed on the SOF. Regulated emissions of NOx, CO, HC, CO2, and PM were also measured over the two test cycles. It was established that some of the emissions measured over the (hot-start) NEDC differed from the real-world cycle. Significant differences were also observed in the vehicle's fuel consumption between the two test cycles. The addition of biodiesel reduced the regulated emissions of CO, HC and PM, while an increase in NOx was observed over the ADC. Carbonyl emissions, PAHs and nitro-PAHs were reduced with the addition of biodiesel over both driving cycles.  相似文献   

3.
Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone.  相似文献   

4.
An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NOx, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h−1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h−1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.  相似文献   

5.
The use of biodiesel fuel as a substitute for fossil fuel in diesel engines has received increasing attention in recent years. This study is the first to investigate and compare the characteristics of mutagenic species, trans,trans-2,4-decadienal (tt-DDE), and polycyclic aromatic hydrocarbons (PAHs) in the diluted exhaust of diesel engines operated with diesel and biodiesel blend fuels. An engine of current design was operated on a dynamometer consistent with the US federal test procedure transient-cycle specifications. Petroleum diesel and a blend of petroleum diesel and biodiesel (B20) were tested. Exhaust sampling was carried out on diluted exhaust in a dilution tunnel with a constant-volume sampling system. Concentrations of tt-DDE and PAHs were analyzed by GC/MS. Although average PAH emission factors decreased from 1403 to 1051 μg bhp-h−1, the results show that tt-DDE is evidently generated (1.28 μg bhp-h−1) in the exhaust of diesel engine using B20 as fuel. This finding suggests that tt-DDE emission from the use of biodiesel should be taken into account in characterization and health-risk assessment. The results also show that tt-DDE is depleted in the diesel engine combustion process and the existence of tt-DDE in biodiesel is the major source of tt-DDE emission. The distribution of tt-DDE in the particulate phase is 55.3% under this study's sampling conditions. For diesel and B20, PAH phase distributions have similar trends. Lower molecular weight PAHs predominate in gaseous phase for both diesel and B20. Cold-start driving has higher tt-DDE and PAH emission factors, as well as a higher percentage of tt-DDE in particulate phase, than for warm-start driving.  相似文献   

6.
Persistent Organic Pollutants (POPs) and Polycyclic Aromatic Hydrocarbons (PAHs) are important classes of compounds of serious environmental concern. These compounds were measured in waters, sediments and soils from several high altitude sites in the Sagarmatha National Park (Nepal) and included in the Himalayan ridge.In water samples, low-level substituted PCBs and PBDEs, along with more volatile PAHs, were the most common contaminants. In sediment and soil samples, the PCB profile was mainly composed of medium-level chlorinated congeners and significantly correlated with altitude. The PAH profile for water and soil samples showed the main contribution of pyrogenic PAHs due to emissions of solid combustion, whereas the profile for sediments indicated the main contribution of pyrogenic PAHs from gasoline emissions. The PAH levels measured in Himalayan samples must be considered as low to medium contaminated, whereas the regarded Himalayan stations can be considered undisturbed remote areas concerning PCB, PBDE and OC compounds.  相似文献   

7.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

8.
Emission factors of large PAHs with 6–8 aromatic rings with molecular weights (MW) of 300–374 were measured from 16 light-duty gasoline-powered vehicles (LDGV) and one heavy-duty diesel-powered vehicle (HDDV) operated under realistic driving conditions. LDGVs emitted PAH isomers of MW 302, 326, 350, and 374, while the HDDV did not emit these compounds. This suggests that large PAHs may be useful tracers for the source apportionment of gasoline-powered motor vehicle exhaust in the atmosphere. Emission rates of MW 302, 326, and 350 isomers from LDGVs equipped with three-way catalysts (TWCs) ranged from 2 to 10 (μg L−1 fuel burned), while emissions from LDGVs classified as low emission vehicles (LEVs) were almost a factor of 10 lower. MW 374 PAH isomers were not quantified due to the lack of a quantification-grade standard. The reduced emissions associated with the LEVs are likely attributable to improved vapor recovery during the “cold-start” phase of the Federal Test Procedure (FTP) driving cycle before the catalyst reaches operating temperature. Approximately 2 (μg g−1 PM) of MW 326 and 350 PAH isomer groups were found in the National Institute of Standards and Technology standard reference material (SRM)#1649 (Urban Dust). The pattern of the MW 302, 326, and 350 isomers detected in SRM#1649 qualitatively matched the ratio of these compounds detected in the exhaust of TWC LDGVs suggesting that each gram of Urban Dust SRM contained 5–10 mg of PM originally emitted from gasoline-powered motor vehicles.Large PAHs made up 24% of the total LEV PAH emissions and 39% of the TWC PAH emissions released from gasoline-powered motor vehicles. Recent studies have shown certain large PAH isomers have greater toxicity than benzo[a]pyrene. Even though the specific toxicity measurements on PAHs with MW >302 have yet to be performed, the detection of significant amounts of MW 326 and 350 PAHs in motor vehicle exhaust in the current study suggests that these compounds may pose a significant public health risk.  相似文献   

9.
The impact of vehicular emissions on air depends, among other factors, on the composition of fuel and the technology used to build the engines. The reduction of vehicular emissions requires changes in the fuel composition, and improving the technologies used in the manufacturing of engines and for the after-treatment of gases. In general, improvements to diesel engines have targeted not only emission reductions, but also reductions in fuel consumption. However, changes in the fuel composition have been shown to be a more rapid and effective alternative to reduce pollution. Some factors should been taken into consideration when searching for an alternative fuel to be used in diesel engines, such as emissions, fuel stability, availability and its distribution, as well as its effects on the engine durability. In this work, 45 fuel blends were prepared and their stability was evaluated. The following mixtures (v/v/v) were stable for the 90-day period and were used in the emission study: diesel/ethanol – 90/10%, diesel/ethanol/soybean biodiesel – 80/15/5%, diesel/ethanol/castor biodiesel – 80/15/5%, diesel/ethanol/residual biodiesel – 80/15/5%, diesel/ethanol/soybean oil – 90/7/3%, and diesel/ethanol/castor oil – 90/7/3%. The diesel/ethanol fuel showed higher reduction of NOx emission at a lower load (2 kW) when compared with pure diesel. The other fuels showed a decrease of NOx emissions in the ranges of 6.9–75% and 4–85% at 1800 rpm and 2000 rpm, respectively. The combustion efficiencies of the diesel can be enhanced by the addition of the oxygenate fuels, like ethanol and biodiesel/vegetable oil, resulting in a more complete combustion in terms of NOx emission. In the case of CO2 the decreases were in the ranges of 5–24% and 4–6% at 1800 rpm and 2000 rpm, respectively. Meanwhile, no differences were observed in CO emission. The carbonyl compounds (CC) studied were formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, crotonaldehyde, butyraldehyde, butanone, benzaldehyde, isovaleraldehyde, valeraldehyde, o-toluenaldehyde, m-toluenaldehyde, p-toluenaldehyde, hexaldehyde, octaldehyde, 2,5-dimethylbenzaldehyde, and decaldehyde. Among them, formaldehyde, acetaldehyde, acetone, and propionaldehyde showed the highest emission concentrations. When ternary blend contains vegetable oil, there is a strong tendency to increase the emissions of the high weight CC and decrease the emissions of the low weight CC. The highest concentration of acrolein was observed when the fuel contains diesel, ethanol and biodiesel. With the exception of NOx, the use of ternary blended fuels resulted on the increase in the emission rates of the studied compounds.  相似文献   

10.
This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   

11.
Polycyclic aromatic hydrocarbon (PAH) measurements are essential for scientists and engineers who investigate these anthropogenic compounds. Diesel engines contribute to the problem, so analysts are measuring PAHs from these sources. However, diesel exhaust presents special problems for precise analytical measurements. The exhaust matrix is very complex; consequently, PAH detection sensitivity deteriorates, especially for trace PAHs in the exhaust. Yet, these are conditions and amounts that exist in real samples. Nonetheless, selected ion chromatogram (SIC) and tandem mass spectrometry (MS/MS) techniques improve trace PAH detection; ion trap technology makes both mass techniques possible. The purpose of this investigation was to evaluate SIC and MS/MS for applications to measure PAHs in diesel exhaust samples. The signal-to-noise ratio for accurate quantitation improves, relative to traditional mass techniques, because these techniques ignore or eliminate interfering components. On a VF-5MS chromatographic column, these techniques improve sensitivity and reproducibility. They produce a superior limit of detection in the useful range for PAH samples extracted from actual engine exhaust, 10-30 pg for the smaller PAHs and 1-6 ng for the larger PAHs. The results with SIC and MS/MS are reproducible, so analysts can report PAH amounts with defined statistical confidence intervals. SIC and MS/MS improve detection for trace PAHs in convoluted diesel exhaust samples.  相似文献   

12.
Abstract

Polycyclic aromatic hydrocarbon (PAH) measurements are essential for scientists and engineers who investigate these anthropogenic compounds. Diesel engines contribute to the problem, so analysts are measuring PAHs from these sources. However, diesel exhaust presents special problems for precise analytical measurements. The exhaust matrix is very complex; consequently, PAH detection sensitivity deteriorates, especially for trace PAHs in the exhaust. Yet, these are conditions and amounts that exist in real samples. Nonetheless, selected ion chromatogram (SIC) and tandem mass spectrometry (MS/MS) techniques improve trace PAH detection; ion trap technology makes both mass techniques possible. The purpose of this investigation was to evaluate SIC and MS/MS for applications to measure PAHs in diesel exhaust samples. The signal-to-noise ratio for accurate quantitation improves, relative to traditional mass techniques, because these techniques ignore or eliminate interfering components. On a VF-5MS chromatographic column, these techniques improve sensitivity and reproducibility. They produce a superior limit of detection in the useful range for PAH samples extracted from actual engine exhaust, 10–30 pg for the smaller PAHs and 1–6 ng for the larger PAHs. The results with SIC and MS/MS are reproducible, so analysts can report PAH amounts with defined statistical confidence intervals. SIC and MS/MS improve detection for trace PAHs in convoluted diesel exhaust samples.  相似文献   

13.
Mi HH  Lee WJ  Chen CB  Yang HH  Wu SJ 《Chemosphere》2000,41(11):1783-1790
Polycyclic aromatic hydrocarbons (PAHs) emission tests for a heavy-duty diesel engine fueled with blend base diesel fuel by adding batch fractions of poly-aromatic and mono-aromatic hydrocarbons, Fluorene and Toluene, respectively, were simulated to five steady-state modes by a DC-current dynamometer with fully automatic control system. The main objective of this study is to investigate the effect of total aromatic content and poly-aromatic content in diesel fuels on PAH emission from the HDD engine exhaust under these steady-state modes. The results of this study revealed that adding 3% and 5% (fuel vol%) Fluorene in the diesel fuel increases the amount of total-PAH emission by 2.6 and 5.7 times, respectively and increases the amount of Fluorene emission by 52.9 and 152 times, respectively, than no additives. However, there was no significant variation of PAH emission by adding 10% (vol%) of Toluene. To regulate the content of poly-aromatic content in diesel fuel, in contrast to the total aromatic content, will be more suitable for the management of PAH emission.  相似文献   

14.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

15.
Abstract

This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   

16.
Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration.

Implications:?The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.  相似文献   

17.
The origin of polycyclic aromatic hydrocarbons (PAH) contamination in bulk atmospheric deposition at two sites of the Seine estuary, one urban and one industrial, has been investigated. The PAH profiles indicate that PAHs mainly have a pyrolytic origin, both in urban and industrial areas. PAH sources vary during the year with an increase of high molecular weight PAH proportions (especially for carcinogenic PAHs) in winter, that means an increase of combustion processes such as domestic heating. Ratios of indicator PAHs (FTH/FTH+PYR and IcdP/IcdP+BghiP) confirm the pyrolytic origin of PAHs. In summer, ratios show the presence of industrial sources. In addition to these two methods, a factor analysis/multiple linear regression model was applied and gave an approximation of PAH source apportionment. PAH were found to be associated predominantly with emissions from road traffic (gasoline and diesel), that accounts for 17-34%. Domestic heating is a very important PAH source in urban areas and accounts for up to 85% of PAHs in winter. Industrial emissions (refineries...) account for 25% in the industrial area in summer. Each is an identified source category for the region and these results are consistent with fly-ashes identified by scanning electron microscopy. This study demonstrates that a combination of source identification methods is a far more efficient than one method alone.  相似文献   

18.
Emissions from 12 in-service heavy-duty buses powered by low- (LSD) and ultra low-sulfur (ULSD) diesel fuels were measured with the aim to characterize the profile of polycyclic aromatic hydrocarbons (PAHs) in the exhaust and to identify the effect of different types of fuels on the emissions. To mimic on-road conditions as much as possible, sampling was conducted on a chassis dynamometer at four driving modes, namely: mode 7 or idle (0% power), mode 11 (25% power), mode 10 (50% power) and mode 8 (100% power). Irrespective of the type of fuel used, naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, fluoranthene and pyrene were found to be the dominant PAHs in the exhaust emissions of the buses. However, the PAH composition in the exhausts of ULSD buses were up to 91±6% less than those in the LSD buses. In particular, three- and four-ringed PAHs were more abundant in the later than in the former. Lowering of fuel sulfur content not only reduced PAH emission, but also decreased the benzo(a)pyrene equivalent (BAPeq) and hence the toxicity of the exhaust. Result from multicriteria decision-making and multivariate data analysis techniques showed that the use of ULSD afforded cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained by the use of LSD.  相似文献   

19.
Polycyclic aromatic hydrocarbon emissions from clinical waste incineration   总被引:1,自引:0,他引:1  
Sadhra S  Wheatley AD 《Chemosphere》2007,66(11):2177-2184
Since the introduction of the Environmental Protection Act in the UK, there are few reports of PAH emissions from clinical waste incinerators (CWIs) operating to improved performance standards. The main aim of this study is to determine PAH emissions from a state-of-the-art CWI focusing on the effects of reactive gases and operating variables on emissions. This was carried out by collection of stack samples over three phases of operation.

At stack conditions, most PAHs are predicted to be in the vapour phase. Reactive losses of PAHs were closely correlated by rank with expected reactivities from laboratory studies. Estimates of emissions incorporating sampling losses were derived, although no correlation was found between PAH losses and the modest levels of reactive stack gases. PAH concentrations were one to two orders of magnitude lower than earlier reports from incinerators without effective air pollution control equipment (APCE). The low levels of carbon monoxide recorded were not correlated with any PAHs.

This study demonstrates the impact of efficient combustion conditions and APCE on PAH emissions from a CWI.  相似文献   


20.
Bioremediation of coal tar PAH in soils using biodiesel   总被引:5,自引:0,他引:5  
Taylor LT  Jones DM 《Chemosphere》2001,44(5):1131-1136
The addition of biodiesel together with nitrate and phosphate to soil containing coal tar, in laboratory and field experiments, resulted in degradation of coal tar polycyclic aromatic hydrocarbons (PAH) that was not apparent when the nutrients alone were added. The addition of motor diesel fuel instead of biodiesel was also tested. Over the 55 days of the field and laboratory experiments, the biodiesel resulted in an increased degradation of naphthalene in the coal tar by 52% and 85%, respectively, and motor diesel resulted in increased depletions of 85% and 96%, respectively. Other PAH containing up to four rings were depleted to lesser extents. The increases in PAH biodegradation by the diesel treatments were ascribed to tar solubilisation and dispersion thereby increasing the PAH bioavailability. The ready biodegradability and low phytotoxicity of biodiesel suggest that it may be suitable as a novel treatment for the bioremediation of coal tar contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号