首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two silver birch clones were exposed to ambient and elevated concentrations of CO2 and O3, and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO2 and O3 on stomatal conductance (gs), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O3 response in silver birch, while crown position and clone played only a minor role. Elevated CO2 reduced the gs, but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO2 and O3 were found. The infection biology of P. betulicola was not correlated with SD or gs, but it did occasionally correlate positively with the length of the guard cells.  相似文献   

2.
The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO2 and/or O3 in relation to stomatal conductance (gs), water potential, intercellular [CO2], leaf temperature and vapour-pressure difference between leaf and air (VPDL) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased gs and decreased Rubisco carboxylation efficiency, Vcmax. As a result of increasing VPDL, gs decreased. Elevated [CO2] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO2 treatment.The positive impact of CO2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases.  相似文献   

3.
We investigated the effect of N deposition (Ndep) on intrinsic water-use efficiency (WUEi), the ratio of photosynthesis (A) to stomatal conductance (gs), for two Quercus cerris stands at different distances to an oil refinery in Southern Italy. We used δ13C in tree rings for assessing changes in WUEi; while the influence of climate and NOx emission was explored through δ18O and δ15N, respectively. Differences in WUEi between the two sites were significant, with trees exposed to different degrees of NOx emissions showing an abrupt increase with the onset of pollution. Assuming similar gs at the two sites, as inferred through δ18O, the higher N availability at the polluted site caused the shift of the A/gs ratio in favour of A. Overall, our result suggests that an increase of Ndep may enhance tree WUE under a scenario of reduction of precipitation predicted for Mediterranean area.  相似文献   

4.
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumulated stomatal flux of O3 (AFst) by canopies and sun leaves in closed aspen and aspen-birch forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin. Stomatal conductance for O3 was derived from sap flux data and AFst was estimated either neglecting or accounting for the potential influence of non-stomatal leaf surface O3 deposition. Leaf-level AFst (AFstl) was not reduced by elevated CO2. Instead, there was a significant CO2 × O3 interaction on AFstl, as a consequence of lower values of gs in control plots and the combination treatment than in the two single-gas treatments. In addition, aspen leaves had higher AFstl than birch leaves, and estimates of AFstl were not very sensitive to non-stomatal leaf surface O3 deposition. Our results suggest that model projections of large CO2-induced reductions in gs alleviating the adverse effect of rising tropospheric O3 may not be reasonable for northern hardwood forests.  相似文献   

5.
Glyphosate use has increased over the last decades for the control of invasive plant species in wetland ecosystems. Although glyphosate has been considered ‘environmentally’ safe, its repeated use could increase the toxicological risk derived from diffuse pollution of surface and groundwater on non-target vegetation. A glasshouse study was designed to determine the effect produced by the addition of different sub-lethal doses of glyphosate herbicides (5–30 mg L−1) to the nutrient solution on the growth and photosynthetic apparatus of Bolboschoenus maritimus. Although B. maritimus plants were able to grow and survive after 20 d of exposure to glyphosate, the presence of this herbicide affected their growth, through a direct interaction with the root system. Particularly, at 30 mg L−1 glyphosate, B. maritimus showed ca. 30% of biomass decrease. The reduction in B. maritimus growth was due to a decrease in net photosynthetic rate (A), which ranged between values ca. 11.5 and 5.5 μmol m−2 s−1 CO2 for the control and the highest glyphosate treatment, respectively. The response of A to glyphosate could be largely accounted for by non-stomatal limitations, since stomatal conductance was similar in all glyphosate treatments. Thus, A decrease was prompted by the negative impact of herbicide on photochemical (PSII) apparatus, the reduction in the absorption of essential nutrients, the reduction of photosynthetic pigments and possibly the reduction in Rubisco carboxilation capacity. Moreover, glyphosate excess caused photoinhibitory damage. In conclusion, in this study we have shown that herbicide water pollution could be a source of indirect phytotoxicity for B. maritimus.  相似文献   

6.
Although post-combustion emissions from power plants are a major source of air pollution, they contain excess CO2 that could be used to fertilize commercial greenhouses and stimulate plant growth. We addressed the combined effects of ultrahigh [CO2] and acidic pollutants in flue gas on the growth of Alternanthera philoxeroides. When acidic pollutants were excluded, the biomass yield of A. philoxeroides saturated near 2000 μmol mol−1 [CO2] with doubled biomass accumulation relative to the ambient control. The growth enhancement was maintained at 5000 μmol mol−1 [CO2], but declined when [CO2] rose above 1%, in association with a strong photosynthetic inhibition. Although acidic components (SO2 and NO2) significantly offset the CO2 enhancement, the aboveground yield increased considerably when the concentration of pollutants was moderate (200 times dilution). Our results indicate that using excess CO2 from the power plant emissions to optimize growth in commercial green house could be viable.  相似文献   

7.
Atmospheric CO2 concentrations are predicted to double within the next century and alter climate regimes, yet the extent that these changes will affect plant diseases remains unclear. In this study conducted over five years, we assessed how elevated CO2 and interannual climatic variability affect Cercospora leaf spot diseases of two deciduous trees. Climatic data varied considerably between the five years and altered disease expression. Disease incidence and severity for both species were greater in years with above average rainfall. In years with above average temperatures, disease incidence for Liquidambar styraciflua was decreased significantly. When significant changes did occur, disease incidence and severity always increased under elevated CO2. Chlorophyll fluorescence imaging of leaves revealed that any visible increase in disease severity induced by elevated CO2 was mitigated by higher photosynthetic efficiency in the remaining undamaged leaf tissue and in a halo surrounding lesions.  相似文献   

8.
Modelling ozone (O3) deposition for impact risk assessment is still poorly developed for herbaceous vegetation, particularly for Mediterranean annual pastures. High inter-annual climatic variability in the Mediterranean area makes it difficult to develop models characterizing gas exchange behaviour and air pollutant absorption suitable for risk assessment. This paper presents a new model to estimate stomatal conductance (gs) of Trifolium subterraneum, a characteristic species of dehesa pastures. The MEDPAS (MEDiterranean PAStures) model couples 3 modules estimating soil water content (SWC), vegetation growth and gs. The gs module is a reparameterized version of the stomatal component of the EMEP DO3SE O3 deposition model. The MEDPAS model was applied to two contrasting years representing typical dry and humid springs respectively and with different O3 exposures. The MEDPAS model reproduced realistically the gs seasonal and inter-annual variations observed in the field. SWC was identified as the major driver of differences across years. Despite the higher O3 exposure in the dry year, meteorological conditions favoured 2.1 times higher gs and 56 day longer growing season in the humid year compared to the dry year. This resulted in higher ozone fluxes absorbed by T. subterraneum in the humid year. High inter-family variability was found in gas exchange rates, therefore limiting the relevance of single species O3 deposition flux modelling for dehesa pastures. Stomatal conductance dynamics at the canopy level need to be considered for more accurate O3 flux modelling for present and future climate scenarios in the Mediterranean area.  相似文献   

9.
Carbon dioxide (CO2) release from manure was investigated under field conditions in one of the compartments in a mechanically ventilated fattening pig house. The potential of CO2 release was tested in the emptied compartment by imposing high ventilation rate and measuring CO2 concentrations in the incoming and exhaust air. When the compartment was filled with pigs, a model of tranquil CO2 exhalation rate (TCER) was used to estimate the part of CO2 produced by animals, in addition to the measurement of CO2 concentrations and ventilation rate. Useful data were extracted from 135 days of continuously measured field data obtained when the housing system was in steady-state. The CO2 release per m2 of pit surface was 18.4 and 25.8 g h−1 m−2 in the emptied pig compartment during the impulse and pulse ventilation rate tests, respectively. It ranged from 1.1 and 116.7 g h−1 m−2 and averaged 42.1 g h−1 m−2 during the 135-day continuous field measurement. In 128 of the 135 days when the compartment was filled with pigs, the mean CO2 release from the manure reached an average of 37.5% of the TCER by pigs, instead of less than 5% believed by many researchers. The maximum CO2 release rate in 2-h steady-state measurements was 94% of the TCER by pigs. This research demonstrated that, in the previous knowledge, there might be a serious underestimation of the CO2 release from the manure in pig houses. The total pig weight, manure temperature and ventilation rate were found the most important variables related to the CO2 release. A mathematical model was developed to estimate the CO2 release as a function of these three variables with R2=0.525.  相似文献   

10.
We measured the soil and leaf CO2 exchange in Quercus ilex and Phillyrea latifolia seasonally throughout the year in a representative site of the Mediterranean region, a natural holm oak forest growing in the Prades Mountains in southeastern Catalonia. In the wet seasons (spring and autumn), we experimentally decreased soil moisture by 30%, by excluding rainfall and water runoff in 12 plots, 1×10 m, and left 12 further plots as controls. Our aim was to predict the response of these gas exchanges to the drought forecasted for the next decades for this region by GCM and ecophysiological models.Annual average soil CO2 exchange rate was 2.27±0.27 μmol CO2 m−2 s−1. Annual average leaf CO2 exchange rates were 8±1 and 5±1 μmol m−2 s−1 in Q. ilex and P. latifolia, respectively. Soil respiration rates in control treatments followed a seasonal pattern similar to photosynthetic activity. They reached maximum values in spring and autumn (2.5–3.8 μmol m−2 s−1 soil CO2 emission rates and 7–15 μmol m−2 s−1 net photosynthetic rates) and minimum values (almost 0 for both variables) in summer, showing that soil moisture was the most important factor driving the soil microbial activity and the photosynthetic activity of plants. In autumn, drought treatment strongly decreased net photosynthesis rates and stomatal conductance of Q. ilex by 44% and 53%, respectively. Soil respiration was also reduced by 43% under drought treatment in the wet seasons. In summer there were larger soil CO2 emissions in drought plots than in control plots, probably driven by autotrophic (roots) metabolism. The results indicate that leaf and soil CO2 exchange may be strongly reduced (by ca. 44%) by the predicted decreases of soil water availability in the next decades. Long-term studies are needed to confirm these predictions or to find out possible acclimation of those processes.  相似文献   

11.
Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A/Ci measurements monthly during the 2004-2008 growing seasons. Our results suggest that the responses of two aspen clones differing in O3 sensitivity showed no evidence of photosynthetic and stomatal acclimation under either elevated CO2, O3 or CO2 + O3. Both clones 42E and 271 did not show photosynthetic nor stomatal acclimation under elevated CO2 and O3 after a decade of exposure. We found that the degree of increase or decrease in the photosynthesis and stomatal conductance varied significantly from day to day and from one season to another.  相似文献   

12.
This study investigated if atmospheric ammonia (NH3) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 μg/m3 (at a sheep farm), ca. 15 μg/m3 (60 m from the sheep farm) and ca. 2 μg/m3 (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH3 is susceptible to this pollutant in the gas-phase. The parameter PIABS, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH3 than the FV/FM ratio, one of the most commonly used stress indicators.  相似文献   

13.
Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO2 and O3 were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O3, alone or in combination with CO2. O3 induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO2 reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO2 + O3 treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O3 treatment, indicating that CO2 cannot totally alleviate the harmful effects of O3.  相似文献   

14.
A paper by Hofmann et al. (2009, this journal) is critiqued. It is shown that their exponential model for characterizing CO2 trajectories for historical data is not estimated properly. An exponential model is properly estimated and is shown to fit over the entire 51 year period of available data. Further, the entire problem of estimating models for the CO2 historical data is shown to be ill-posed because alternate model forms fit the data equally well. To illustrate this point the past 51 years of CO2 data were analyzed using three different time-dependent models that capture the historical pattern of CO2 increase. All three fit with R2 > 0.98, are visually indistinguishable when overlaid, and match each other during the calibration period with R2 > 0.999. Projecting the models forward to 2100, the exponential model comes quite close to the Intergovernmental Panel on Climate Change (IPCC) best estimate of 836 ppmv. The other two models project values far below the IPCC low estimates. The problem of characterizing historical CO2 levels is thus indeterminate, because multiple models fit the data equally well but forecast very different future trajectories.  相似文献   

15.
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O3 under beech and spruce, and was related to O3-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O3 regime. δ13C signature of newly formed fine-roots was consistent with the differing gs of beech and spruce, and indicated stomatal limitation by O3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests.  相似文献   

16.
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO2]) and elevated ozone concentration ([O3]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO2] and [O3] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO2 fumigation had begun, but O3 fumigation had not. Trees in elevated [CO2] plots showed a stimulation of leaf area index (36%), while trees in elevated [O3] plots had lower leaf area index (−20%). While individual leaf area was not significantly affected by elevated [CO2], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO2]; however, the two clones responded differently to long-term growth at elevated [O3]. The O3-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O3] (−32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O3] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O3], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions.  相似文献   

17.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   

18.
In a companion paper by Hu et al. [2007. A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmospheric Environment, doi:10.1016/j.atmosenv.2007.04.025], a kinetic mechanism was developed from data generated in the University of North Carolina's (UNC) 270 m3 dual outdoor aerosol smog chamber, to predict secondary organic aerosol (SOA) formation from toluene oxidation in the atmosphere. In this paper, experimental data sets from European Photoreactor (EUPHORE), smog chambers at the California Institute of Technology (Caltech), and the UNC 300 m3 dual-outdoor gas phase chamber were used to evaluate the toluene mechanism. The model simulates SOA formation for the ‘low-NOx’ and ‘mid-NOx’ experiments from EUPHORE chambers reasonably well, but over-predicts SOA mass concentrations for the ‘high-NOx’ run. The model well simulates the SOA mass concentrations observed from the Caltech chambers. Experiments with the three key toluene products, 1,4-butenedial, 4-oxo-2-pentenal and o-cresol in the presence of oxides of nitrogen (NOx) are also simulated by the developed mechanism. The model well predicts the NOx time–concentration profiles and the decay of these two carbonyls, but underestimates ozone (O3) formation for 4-oxo-2-pentenal. It well simulates SOA formation from 1,4-butenedial but overestimates (possibly due to experimental problems) the measured aerosol mass concentrations from 4-oxo-2-pentenal. The model underestimates SOA production from o-cresol, mostly due to its under-prediction of o-cresol decay. The effects of varying temperature, relative humidity, glyoxal uptake, organic nitrate yields, and background seed aerosol concentrations, were also investigated.  相似文献   

19.
The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO2 protected photosynthesis of both species against moderate heat stress. Elevated CO2 increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 °C) decreased all of these parameters in birch regardless of CO2 treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO2 were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO2. Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms.  相似文献   

20.
Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH4), nitrate (NO3), and ammonia (NH3) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO2. We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO3, NH4 and NH3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH3 had no effect on efflux of CO2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO3 and NH4 reduced CO2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号