首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
以滇池北岸大清河下游典型农区韭菜田与花卉地为对象,通过野外采样观测与室内化学分析,研究了居民农田混合区土壤磷输入输出特征及表观平衡。结果表明:调查区总面积46.7hm~2,磷主要输入途径为化肥施用、附近居民生活污水排放、养殖废水排放、乡镇企业污水排放、韭菜原位腐解。磷输入以化肥施用为主,每年输入436.83kg/hm~2,占磷输入总量的89.51%。韭黄收获每年输出25.69kg/hm~2。调查区磷输入总量22.79t,输出总量1.21t,磷的表观平衡21.58t。在滇池流域化肥施用是混合区农田磷的主要来源,磷的表观平衡为462.1kg/hm~2。土壤磷易发生淋失,对附近水体构成威胁。  相似文献   

2.
采用农田生态系统磷平衡计算方法,对北京地区密云县和房山区农田土壤磷养分平衡状况进行了研究。结果表明,2006年密云和房山的磷盈余总量分别为4084.11t和10851.19t,磷盈余强度分别为110.81kg/hm2和386.48kg/hm2。磷肥是密云和房山磷素投入的最主要来源,化肥磷的施用量是造成农田土壤磷平衡空间差异的直接因素,两者呈极显著相关关系。不同乡镇化肥投入差异较大,导致磷平衡总量和强度分布严重不平衡,房山县的磷平衡量由西北向东南递增。密云县磷盈余强度表现为西部少,东部多,房山区磷盈余强度较大的地区多在南部地区。通过对比研究,分析磷素养分损失态和盈余态负荷基本趋势,找到污染潜势产生原因,提出了促进农田磷素平衡与降低磷养分负荷相应调控对策和措施。  相似文献   

3.
基于物质流分析的密云水库上游流域磷循环特征   总被引:8,自引:3,他引:5  
运用物质流分析方法,对北京市地表饮用水源地--密云水库流域进行了磷循环特征的研究;分析了研究区域内种植业、畜牧业、人口和简单子系统内部及子系统间的磷输入输出状况,以及系统整体的代谢效率特征,讨论了流域水体磷污染负荷的影响因素.研究结果表明:①化肥、饲料添加剂和农药是流域磷输入的主要来源,占直接物质磷输入总量的52.9%;整个系统向环境输入磷2868.44t,其中的26.5%直接进入水体.②在水体磷负荷中,畜牧业系统的贡献最大,为1800.26 t,达到输出总量的82%,其次为种植业系统,占9.4%.③系统整体结构不协调.呈现单向和开放状态.研究区种植业系统运行出现磷亏缺,并具有区域性和不均衡性的特点;而畜牧业系统则出现磷盈余,整体结构不协调;畜禽的排泄物未能得到有效处置和循环再生,其中进入水体的量占畜禽粪尿磷总量的40.9%,从而造成严重的资源浪费和广泛的生态环境影响.④水体污染负荷与城市化率密切相关.  相似文献   

4.
白洋淀流域氮、磷、COD负荷估算及来源解析   总被引:2,自引:0,他引:2  
基于DEM数据,运用GIS工具划分子流域,并提取土地利用和土壤类型等空间相关资料,通过文献调研和区域情况调查获取模型参数,建立白洋淀流域氮、磷、COD污染负荷模型,并进行污染源解析.结果表明:流域氮负荷为31815.47t/a,主要来自种植和土壤侵蚀,贡献率分别为26.52%和21.03%;磷负荷为3873.33t/a,主要来自土壤侵蚀和种植,贡献率分别为30.78%和25.80%;流域COD负荷为110728.52t/a,主要来自畜禽养殖和城镇污水,贡献率分别为43.47%和23.53%.总体分析表明,种植、畜禽养殖、土壤侵蚀和城镇污水是影响白洋淀流域氮、磷、COD污染物的主要来源,需优先施以管控.  相似文献   

5.
巢湖作为安徽省重要的饮用水源,其面源污染问题受到广泛关注.本文利用一种基于遥感分布式面源污染计算模型——DPeRS(Diffuse pollution estimation with remote sensing)模型,估算了巢湖流域2010年氨氮(NH+4-N)和化学需氧量(CODCr)面源污染物负荷,并进行污染特征解析,结果表明:1巢湖流域污染物以耗氧有机物为主,2010年产生NH+4-N 1562 t,进入水体800 t;CODCr9×104t,进入水体5×104t.22010年不同月份面源氨氮和CODCr污染负荷均有显著性差异,其中,7—8月氨氮和CODCr污染产生量较高.3空间分布上,氨氮和CODCr污染物主要集中在巢湖流域西北部地区;从区县角度来看,合肥市市辖区面源污染物产生量及入河排放量最大.4污染类型分析结果表明:城镇径流是氨氮最主要的面源污染源,且氨氮污染负荷与城镇人口密度的相关系数达到0.98,氨氮污染负荷与农田氮平衡的相关系数为0.65;而畜禽养殖是CODCr最主要的面源污染源,且CODCr污染产生负荷与畜禽养殖密度之间有显著的空间关联性,其相关系数达到0.91.  相似文献   

6.
巢湖流域非点源磷流失关键源区识别   总被引:35,自引:9,他引:26  
周慧平  高超 《环境科学》2008,29(10):2696-2702
农业非点源磷污染是水体富营养化的重要原因.识别流域内各类景观中土壤磷向水体流失风险最大的关键源区并加以重点控制是流域非点源磷污染治理的重要手段.以巢湖流域为研究区,尝试采用改进的磷指数法在较大的流域尺度开展非点源磷流失风险评价及关键源区识别.在影响磷流失的污染源因子中增加了土壤磷吸持指数和磷饱和度指标.以反映土壤磷在水土界面迁移能力的差异;在迁移因子中又考虑了污染源与巢湖的距离.以反映污染源对最终受纳水体的影响;同时根据研究区特征及研究尺度对磷指数各指标分级与等级值进行了修改.结果表明,流域土壤磷吸持指数空间差异较小,总体上偏低,具有较高的流失风险;而土壤磷饱和度空间差异较显著,饱和度>25%的高风险区域超过流域面积的40%.巢湖流域非点源磷污染风险指数空间差异显著,风险等级最高(占流域面积5%)的区域分布在主要入湖河流下游的两岸平原地区,应作为磷污染重点控制的关键源区.磷指数法能够快速而方便地识别非点源磷污染的关键源区,应用于较大尺度流域可以从宏观上掌握非点源磷污染的空间差异并实施有效治理.  相似文献   

7.
巢湖流域氮磷面源污染与水华空间分布遥感解析   总被引:6,自引:0,他引:6  
基于遥感监测手段,分别应用DPeRS模型和MODIS水华提取方法对巢湖流域氮磷面源污染特征和巢湖水体水华爆发规律进行遥感像元尺度解析,结果表明: 2010年巢湖流域总氮产生量为1900.3t,入河量为846.5t;总磷为244.1t,入河量为76t.巢湖流域农业面源污染对氮素污染贡献最大,而水土流失则对磷面源污染贡献最大;综合巢湖流域氮磷面源污染和水华爆发的时空特征分析,明确氮磷面源污染与巢湖水华具有相关性,并且时间上水华爆发频率较氮磷面源污染具有先滞后后同步的特征,且面源污染负荷与水华爆发面积的相关系数为0.45;在空间上,面源污染负荷较大区域与水华爆发频度较高区域也有较好的匹配性;基于这种相关性,应用DPeRS模型对巢湖流域进行氮磷减排情景分析,结果表明在施肥量减少30%,农村生活垃圾处理率提高到60%,畜禽粪便处理率和城市垃圾处理率提高到80%的情况下,氮磷面源污染平均削减率可以达到50%.  相似文献   

8.
2010年洱海全湖磷负荷时空分布特征   总被引:3,自引:0,他引:3  
为探讨不同来源磷负荷对洱海水体富营养化的贡献,研究了洱海入湖河流、干湿沉降和沉积物内源释放等来源磷负荷的时空变化特征. 结果表明:2010年洱海磷负荷的主要来源是入湖河流,其所带来的磷负荷占总入湖负荷的33%. 入湖河流磷负荷与洱海水体富营养化指数呈显著正相关,并且季节性变化明显,10月是高峰期入湖河流磷负荷区域差异较大,北部3条河流是主要来源,其中以弥苴河入湖磷负荷最大,占入湖河流磷负荷总量的52%. 沉积物磷扩散通量由北向南呈下降趋势,最高值在湖心区,11月最大. 干湿沉降入湖磷负荷季节性变化明显,干沉降占干湿沉降入湖磷负荷总量的47%. 外源入湖磷负荷控制,应以雨季之初为关键时期,以弥苴河及其流域为重点区域,以坝区农业污染控制为重点,同时应加强湖泊水体生态修复控制沉积物内源磷释放.   相似文献   

9.
磷资源合理利用及回收   总被引:4,自引:0,他引:4  
针对磷在自然界中的储量有限,在生物圈中大部分是单向流动,而世界范围内对磷的消耗利用正在逐年增长,同时含磷污水的排放又是造成水体富营养化、环境污染的重要原因之一等客观情况,提出了开发不含磷或低磷的替代产品、提高含磷化肥农药的利用率、利用含磷污水灌溉农田、用含磷污泥施肥、从污水中回收磷等节约有限磷资源、减少磷排放的可持续利用和回收磷资源、保护生态环境等有效措施.  相似文献   

10.
为了解洱海流域土地利用对土壤养分的影响,调查研究了土地利用方式、种植模式,并研究了其对洱海流域坝区土壤w(TN)、w(TP)、w(OM)(OM为有机质)、w(olsen-P)(olsen-P为速效磷)和w(NO3--N)的影响.结果表明:①流域坝区土壤中w(OM)、w(TN)较高,平均值为52.16和2.76 g/kg;w(olsen-P)较低,平均值为6.55 mg/kg.②对比农田、林地、裸地、园地4种土地利用方式,土壤中w(TN)、w(OM)、w(TP)、w(olsen-P)均呈农田>园地、林地>裸地的变化趋势.③种植模式对农田土壤养分影响有差异,水稻-大蒜模式下土壤的养分含量总体较高,w(TN)、w(OM)平均值分别为4.21、74.22 g/kg,是玉米-蚕豆模式的1.98、1.96倍;蔬菜模式土壤中w(NO3--N)高达103.3 mg/kg,是水稻-蚕豆模式的37.29倍.④流域坝区农田土壤养分具有空间变异性,海东地区土壤中w(TP)和w(olsen-P)较高,分别为1.23 g/kg和11.48 mg/kg,是凤仪地区的2.16和2.15倍;上关-邓川地区w(TN)较高,为4.28 g/kg,是海东地区的1.63倍;w(OM)空间差异不明显(P>0.05).研究显示,流域坝区土壤氮、磷流失总量分别为686、241 t,主要贡献来自农田.   相似文献   

11.
基于GIS的滇池流域景观格局优化   总被引:6,自引:0,他引:6  
景观格局优化是景观生态学中的难点和热点问题。选择滇池流域为研究区域,在RS和GIS的支持下对2008年Landsat TM影像进行解译判读,获得景观类型图,运用最小耗费距离模型对区域景观格局进行优化。结合景观各组分生态系统服务功能价值和空间作用,构建了生态源地、生态廊道和生态节点等景观组分,以加强生态网络的空间连通性,提高景观格局稳定性,完善生态功能。源地具有较高的生态系统服务功能,需要维持和增大源斑块面积。所构建城市区域廊道、森林生态廊道、农业生产廊道应采取保持廊道规模,建立缓冲区,加强植被绿化,减少污染物的排放等措施以提高整个廊道的连通性。节点位于景观生态流和连通的重要位置上,需要加强控制。该研究对流域生态规划和土地利用优化布局有一定的参考价值。  相似文献   

12.
滇池宝象河流域氮磷流失空间格局解析   总被引:3,自引:1,他引:2       下载免费PDF全文
有效控制氮磷流失量是水质持续改善的关键因素,定量解析流域氮磷流失量对于氮磷污染精准控制至关重要.宝象河作为滇池流域最主要的入湖河流之一,对滇池水质的影响极为重要.该研究基于第二次全国污染源普查数据,建立了宝象河流域高分辨率的氮磷排放清单,通过构建宝象河LODEST模型估算流域氮磷非点源污染入河系数,并对宝象河流域的氮磷流失量及其空间格局进行解析.结果表明:①2018年宝象河流域TN和TP的排放量分别为1 456.92、191.16 t,流域内种植业非点源是最大的污染源,其次是城镇生活点源和未收集点源.②2018年宝象河干海子断面TN和TP的径流通量分别为270.49和11.19 t,非点源入河系数分别为0.297和0.048.③2018年宝象河流域TN和TP流失量分别为432.28和18.57 t,氮磷流失空间格局呈显著的空间异质性,流域内TN和TP流失强度总体呈外高内低的分布,农业污染为主的子流域氮磷流失最为严重.该研究提出的氮磷流失量估算方法较好地揭示了流域氮磷流失空间分布规律,论证了降雨和地形的不均匀性是造成流域氮磷流失量呈显著空间异质性的重要因素.研究成果可为滇池流域入湖污染负荷控制与削减工程提供重要的科学依据,同时能够为宝象河流域水环境的精准控污和精细管理提供有效的决策支撑.   相似文献   

13.
田丰  钱新  陈众 《中国环境科学》2012,32(12):2224-2229
建立了巢湖生态动力学模型CAEDYM,并利用2010年的实测出入湖流量、水质、水文、气象等数据对模型进行了参数验证,确定了适用于巢湖水环境特征的生态动力学模型参数.利用模型中的磷循环原理模拟了巢湖水体中磷的生态动力学循环过程和浮游植物群落的季节性演替模式,并模拟了调水对浮游植物群落演替模式的影响.模拟结果表明,巢湖浮游植物优势种的演替模式为:春季绿藻占优势,夏季和秋季蓝藻占优势,冬季硅藻占优势.通过夏季的短期调水可使巢湖各点最终的TN、TP分别平均下降了约18.9%,25.2%.从Chl a的计算结果可知,调水的实施对巢湖西半湖和中部湖区Chl a的改善效果比较明显,可使Chl a的峰值从69μg/L下降到57μg/L,对巢湖的蓝藻有较好的改善效果,且对浮游植物群落的季节性演替影响不大.  相似文献   

14.
通过对凤羽河小流域出水口断面进行定位连续监测,计算流域出水量和氮磷排放量,解析了流域氮磷排放量的时间变化特征,以期为小流域氮磷排放量计算、农业管理措施调控、削减流域氮磷排放量提供科学依据.结果表明,凤羽河小流域年度水流量为0.99亿m3,7—9月雨季水流量占全年的43.70%.小流域总氮(TN)的年排放量为139.8 t,可溶性总氮(DTN)是氮的主要排放形式,占TN的71.16%,颗粒态氮(PN)占TN的28.84%.小流域总磷(TP)的年排放量为27.7 t,颗粒态磷(PP)是磷的主要排放形式,占TP的76.47%,可溶性总磷(DTP)占TP的23.53%.7—9月雨季氮磷排放量占全年总量的比例分别为55.33%和77.81%.降雨是影响流域径流过程的重要因素,同时,流域内农业管理措施对径流量和氮磷排放具有较大影响.  相似文献   

15.
基于WARMF模型的杭埠-丰乐河流域水文模拟研究   总被引:1,自引:1,他引:1  
研究了WARMF模型在杭埠-丰乐河流域(巢湖流域最大支流)的水文模拟适应性能并进行了流域水文系统分析.利用AVSWAT2000模型将流域划分为37个子流域,利用流域地貌-土壤分布对应关系、土壤剖面结构、地下水位埋深等条件,确定了子流域的平面分组与剖面土层结构,较大程度上降低了流域模型参数校准的难度与不确定性.利用2000~2003年的水文观测数据,在参数灵敏度分析基础上,对模型水文参数进行了校准与检验.结果表明,WARMF在研究区具有较好的适应性能.WARMF模型与AVSWAT2000模型的水文模拟结果对比表明,WARMF模型具有更好的日拟合性能.基于模型的模拟结果,在空间尺度上定量分析了流域从降水开始到入湖的水循环过程,在时间尺度上分析了年内降雨、径流的分布及其对应关系.流域概化、模型的校准与检验以及流域水文时空变化的系统分析方法等对流域水文、环境的模拟研究与系统分析具有探索意义.  相似文献   

16.
城市食物生产与消费系统磷代谢研究   总被引:1,自引:1,他引:0  
研究运用物质流分析方法,构建基于物质代谢过程的城市食物生产与消费系统磷代谢分析框架,即追踪以"食物生产"、"食物加工"、"居民消费"、"废物处置"为主要过程的磷代谢路径,解析磷代谢主要过程机制并提出相应的核算方法;在此基础上,以合肥市食物生产与消费系统为例进行了案例研究.结果表明,2008年合肥市食物生产消费系统磷的总...  相似文献   

17.
巢湖水质与流域农业投入的关联性研究   总被引:2,自引:0,他引:2  
张燕  高翔  张洪 《环境科学》2012,33(9):3009-3013
为探讨巢湖富营养化与流域农业生产投入资源的关联性,选择了化肥剩余、节水灌溉面积、农膜、水土流失治理等可能影响水体富营养化的因子;研究中采用相关分析与逐步回归的方法,同时,提出了一种结合Technique for Order Preferenceby Similarity to Ideal Solution(TOPSIS)法计算化肥剩余量的方法.结果表明,巢湖流域农业生产投入的各种资源中,对巢湖水体富营养化影响较大的是化肥剩余、节水灌溉面积和农膜,并且化肥剩余的影响还存在1 a的滞后期.因此,有必要从提高化肥利用效率、改进灌排水方式并减少农业用水入手,以求节约资源,同时降低农业生产对巢湖水质的影响.  相似文献   

18.
六叉河小流域不同景观结构中径流磷形态差异分析   总被引:6,自引:3,他引:3  
选取巢湖六叉河小流域,研究了流域内不同类型景观降雨产流过程中径流磷素的形态差异.结果表明,旱地径流中总磷、溶解性总磷、颗粒态总磷、总活性磷、颗粒态活性磷的浓度最高,水稻田次之,河道中最低.颗粒态磷是旱地和水稻田磷索输出的主要形态,颗粒态活性磷占总活性磷的80%以上;而河道径流中各种磷形态浓度值均较低,总磷浓度均值在0.4mg·L-1以下,磷素输出以溶解态磷为主.磷素由旱地经过水稻田向河道传输过程中,颗粒物浓度显著下降,河流中颗粒态磷浓度降低至50%左右,活性组分浓度显著降低.由水塘、沟渠等组成的多水塘系统不仅降低了磷素输出的总量,而且对活性磷有较强的削减作用,在非点源流域控制及水源地水质保护方面有重要意义.  相似文献   

19.
水土保持生态补偿对于我国的水土流失治理意义重大,水土保持补偿标准的确定是建立生态补偿机制的核心问题。基于潘家口水库上游东北沟流域1990年和2009年土地利用数据和气候、 土壤、 植被、 DEM及农户调查等数据,应用通用土壤侵蚀方程模型(RUSLE)计算该流域采取预防水土流失措施后的土壤侵蚀减少量,在此基础上采用环境经济学的方法核算水土保持生态功能的提供方和受益方两个主体的成本和收益,并构建了水土保持生态补偿标准计算模型,实现了水土保持生态补偿标准定量计算。结果显示:流域生态系统的年土壤保持量为6.49×104 t·a-1;水土保持服务提供方损失为24.48×104元,所得收益来自减少土地损失和肥力损失的价值共计44.21×104元;水土保持服务受益方主要指下游潘家口水库所得收益来自减少泥沙淤积和减少富营养化共计84.88×104元;流域所得的补偿介于24.48×104元(222.55元/人)到46.90×104元(426.36元/人)之间。  相似文献   

20.
降雨强度对洱海流域凤羽河氮磷排放的影响   总被引:8,自引:7,他引:1  
降雨形成的径流携带各种陆面物质进入河流湖泊是导致水质变化的重要因素,而不同降雨强度下的河流氮磷输出特征均有所差异,因此,为阐明雨强对高原湖泊典型流域污染物排放的影响,本研究以洱海流域上游的凤羽河为研究对象,基于连续3 a(2011~2013年)的出口断面水质水量监测,分析了4种降雨强度(小雨、中雨、大雨、暴雨)对水体氮磷浓度和形态的影响.结果表明,降雨强度对凤羽河氮磷排放的影响显著,所有组分的氮和磷浓度平均值在小雨(10 mm)和中雨(10~25mm)时较低,在大雨(25~50 mm)和暴雨(50~100 mm)时较高;氨氮(NH_4+-N)(57. 14%~76. 85%)占总氮(TN)的质量分数大于颗粒态氮(PN)(23. 15%~42. 86%),溶解态总磷(TDP)(22. 73%~28. 00%)占总磷(TP)的质量分数小于颗粒态磷(PP)(72. 00%~77. 27%);不同形态的氮浓度比较为:TN NH_4+-N PN;不同形态的磷浓度比较为:TP PP TDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号