首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
A research project was carried out to evaluate toxicological effects of compost addition to agricultural soil using the earthworm Eisenia foetida (Annellida) as a representative organism of the soil fauna. Moreover, the correlation between compost biochemical stabilization and toxicity at different phases of the composting process was assessed. Samples were collected from three composting plants at three different maturation levels (beginning of the composting process, intermediate compost after bio-oxidation, and mature refined compost). Two tests were performed: a standard chronic solid-phase test and an acute solid-phase test (developed originally by the authors). In the first test, the measured end-points were mortality, growth and reproduction; while in the second test earthworms’ behavior was evaluated. The chosen compost concentrations in soil ranged from 2.5 to 100 %, with the aim of obtaining the toxicological parameters (LC50) and to mimic real agricultural dosages for the lower concentrations. Results indicated an increase in compost toxicity with greater compost concentrations; in particular, agricultural compost dosage below 10 % showed no toxicity. Moreover, toxicity did not decrease during composting; intermediate compost showed the highest LC50 values. As a consequence, no correlation was ascertained between the results of ecotoxicological analysis and waste biochemical stability parameters during the composting process.  相似文献   

2.
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products.  相似文献   

3.
The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined.Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities.  相似文献   

4.
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a “green” surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured.Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.  相似文献   

5.

This study presents the results obtained in compostability tests of organic fraction of municipal solid waste (OFMSW) digestate. The final aim was to obtain mature compost without phytotoxic effects. For the evaluation of the composting process, a novel parameter describing the performance of the composting process, the relative heat generation standardized with the initial volatile solid content (RHGVS0), was defined and evaluated at laboratory-scale. From these laboratory-scale test, the optimum operational conditions were obtained, a mixing ratio (v/v) of 1:1:0 (bulking agent:digestate:co-substrate) and with 15% of mature compost as inoculum. Subsequently, these optimum operational conditions were applied in the active phase of the composting pilot-scale reactor. The active composting stage took 7 days, subsequently a curing phase of 60 days was carried out at ambient conditions. After 30 days of curing, the mature compost showed a specific oxygen uptake rate (SOUR) of 0.14 mg O2/g VS·h, a germination index (GI) of 99.63% and a low volatile fatty acids (VFA) concentration (41.3 AcH mg/kgdm), being indicative of the good compost stability and maturity of the compost. The very good quality of the final compost obtained indicated that the RHGVS0 accurately describes the performance of the composting process.

  相似文献   

6.
The objective of this study was to evaluate a variety of maturity indices and heavy metal concentrations in the composting process. A full-scale study was performed on animal manures (dairy:beef:swine = 50%:30%:20%, w/w) mixed with sawdust using a self-screwed turner over a time period of 63 days. Several chemical compost characteristics and germination indices were monitored on samples collected weekly at a prototype composting facility. NH(4)-N concentrations decreased during the composting time, on the contrary NO(3)-N concentrations increased sharply after 30 days. As composting proceeded, the humic acids content increased from 1.45% to 2.70% of the organic carbon content, whereas the fulvic acids content decreased gradually. Temperature in the compost pile and concentration of NH(3) averaged 32.4 degrees C and 12.9 ppm at the initial composting phase and 69.5 degrees C and 47.3 ppm at the active bio-oxidation composting phase, respectively. Seed germination and germination index (GI) increased during the composting process, and the compost samples at the end of composting phase had GI values greater than 120. Among the composting processes, there were significant differences (p<0.05) in concentration of Zn, Cu and Pb in the compost. In conclusion, the suggested maturity parameter values and metal concentrations of composted animal manures can provide better understanding of maturation process of animal manure compost.  相似文献   

7.
A new index for evaluating compost maturity was developed based on a germination test of Komatsuna seeds using water extract from compost. Several compost samples were collected from a kitchen-garbage composting plant to determine an index to evaluate compost maturity. Firstly, some extraction conditions for extracting compost ingredients with water were evaluated using the time course of total organic carbon concentration in water extract. The water temperature of 60?°C, periodic mixing, and extraction period >1 were selected. Secondly, applying these conditions, the germination test was performed using the water extract solutions at several dilution ratios. The relationship between the germination rate and the dilution ratio was expressed using a logistic regression curve. The dilution ratio to give a germination rate of 0.5, defined as DG50, was calculated with the parameters of the curve. Compared with other maturity indices, DG50 was the most effective. Moreover, it has a unique feature in that maturity is quantified even for the compost from which water extract results in a germination rate of 0. This feature can be used to compare the maturity of different kinds of composts and quantify the change in the levels of inhibitory substances in a composting process.  相似文献   

8.
Biodegradability under composting conditions is assessed by test methods, such as ASTM D 5338-92, based on the measurement of CO2 released by test materials when mixed with mature compost and maintained in a controlled composting environment. However, in real composting, biodegradation occurs in fresh waste. To clarify this point, the biodegradation of paper and of a starch-based biodegradable thermoplastic material, Mater-Bi ZI01U, was followed by measuring the weight loss of samples introduced either into a mature compost or into a synthetic waste. The weight loss in mature compost was higher at the beginning but tended to decrease; in synthetic waste a first lag phase was followed by an exponential phase. Complete degradation of paper was noticed simultaneously in the two substrates (after 25 days). The bulkier Mater-Bi samples were fully degraded after 20 days in fresh waste, but after 45 days in mature compost. Therefore, the test methods using mature compost as a substrate can possibly underestimate the biodegradation rate occurring in fresh waste, i.e., in real composting plants, and have to be considered as conservative test methods. The test procedure described in this paper seems very suitable as a screening method to verify the compostability of plastic materials in a composting environment.  相似文献   

9.
This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan’s compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives.  相似文献   

10.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

11.
Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment.  相似文献   

12.
The potential for using plant pathogens and seeds as indicator organisms for assessing sanitization of plant wastes during composting was tested in bench-scale flask and large-scale systems. Plasmodiophora brassicae was unsuitable due to high temperature tolerance in dry to moist composts, and detection of viable inoculum post-composting using bioassay plants not corresponding with that using TaqMan® PCR, possibly due to preservation of nucleic acids at elevated temperatures. Several other plant pathogens (Sclerotinia sclerotiorum, Microdochium nivale, Phytophthora cinnamomi and Phytophthora nicotianae) were unsuitable due their low temperature tolerance. Fusarium oxysporum f.sp. cepae and f.sp. radicis-lycopersici chlamydospores and tomato seeds were suitable indicators due to their moderate temperature tolerance and ease of viability testing post-composting. Abutilon seeds were more tolerant than tomato seeds of compost temperatures ?52 °C but more prone to degradation at lower temperatures and therefore less suitable as indicators. Relationships between compost temperature during exposures of 2-10 days and subsequent viability of the above chlamydospores or seeds enabled the sanitizing effect of composting processes to be predicted within 2-6 days. Plant waste type (woody or vegetable) had a small but significant effect on the relationship for tomato seeds but not for F. oxysporum chlamydospores.  相似文献   

13.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

14.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

15.
Composting is a good method for recycling surplus manure and stabilizing organic matter from biowastes. Compost is used as a soil amendment and recently, for restoration of vegetation in barren areas. We investigated the relationship between the type of woody biomass (using Robinia pseudoacacia, Japanese larch and apple) and the humification index (HI) of the resulting compost. This study evaluated the difference in HI between the three compost types, and the structural features of composts and extracted humic acids (HAs). The HIs for R. pseudoacacia and apple were larger than that for Japanese larch after composting for 11 months. The structural features of the Japanese larch compost were also different from the apple and R. pseudoacacia, with a very high carbon/nitrogen ratio. The average molecular weights and ultraviolet–visible spectra (A600/C) of HAs extracted from composting samples at 0 and 11 months indicate that the humification rate of Japanese larch was slower than that of R. pseudoacacia and apple. During composting, the average molecular weights of apple and R. pseudoacacia decreased, while their A600/C values increased, but the reverse was observed for Japanese larch. The humification rate was found to depend on the type of woody biomass being composted.  相似文献   

16.
Over a period of 21 months, we composted food refuse from a student restaurant in Hokkaido University using a commercially available composting machine. The machine had two reactors, each with a working volume of 250 l. The refuse was mixed with sawdust in a ratio of 5 l sawdust to 10 kg refuse, and this mixture was fed into the machine daily. We studied the characteristics of the refuse, the composting mixture, and the finished compost in an effort to optimize the operating parameters. We also evaluated the effectiveness of the composting process by determining the decomposition rates of the composting materials. The optimum moisture content of the composting mixture was between 30% wet basis (wb) and 40% wb in this machine. The composting machine worked well when the first reactor was filled with composting mixture and 0.5 kg lime was added once per week. The mass of the materials supplied was reduced by 84% over the study period. The decomposition rate of the volatile matter in all composting materials was 66%. The mass of the food refuse supplied was 14.8 kg/day on average, and the moisture content of the refuse was 77% wb on average. Received: October 4, 1999 / Accepted: April 4, 2000  相似文献   

17.
A series of miscible blends consisting of cellulose acetate propionate (CAP) and poly(ethylene glutarate) (PEG) or poly(tetramethylene glutarate) (PTG) were evaluated in a static bench-scale simulated municipal compost environment. Samples were removed from the compost at different intervals, and the weight loss was determined before evaluation by gel permeation chromatography, scanning electron microscopy, and1H NMR. The type of polyester (PEG versus PTG) in the blend made no difference in composting rates. At fixed CAP degree of substitution (DS), when the content of polyester in the blend was increased, the rate of composting and the weight loss due to composting increased. When the CAP was highly substituted, little degradation was observed within 30 days and almost all of the weight loss was ascribed to loss of polyester. Although the polyester was still observed to degrade faster, when the CAP DS was below approximately 2.0, both components are observed to degrade. The data suggests that initial degradation of the polyester is by chemical hydrolysis and the rate of this hydrolysis is very dependent upon the temperature profile of the compost and upon the DS of the CAP.  相似文献   

18.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

19.
This study was conducted to evaluate the composting processes in Sri Lanka and to identify essential improvements. The study consisted of a questionnaire survey, field observations, and interviews. The main shortcomings identified by this study were: no source separation at origin, and no monitoring for temperature, moisture, stability, or maturity during processes of composting. These problems hinder the smooth operation of the composting processes and lead to low demand for compost. Based on the findings, the recommendations for increasing the demand for compost are performing source separation during waste collections, improvement of processes by monitoring the temperature and moisture, and marketing compost so as to improve the popularity of the compost among farmers.  相似文献   

20.
Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment.Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号