首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
通过优化阴极材料,构建新型单室无膜壁式空气阴极微生物燃料电池,开展了污泥浓度、阳极面积、导线材料和NaCl离子浓度等影响因素及其优化试验研究。结果显示:在恒温30℃和外接电阻1 000Ω的条件下,以铜线为导线,污泥浓度为21 000 mg/L,阳极面积为31.4 cm2,Na+浓度为200 mmol/L时,其产电性能最佳,最大电压为597 mV,最大输出功率密度为301 mW/m2,内阻为92.5Ω。此外,还分析了污泥运行过程中的变化。与目前其他以未经过预处理的剩余污泥作为底物的微生物燃料电池相比,该新型单室无膜壁式空气阴极微生物燃料电池功率密度较高,内阻较低。  相似文献   

2.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

3.
电化学产电菌的分离及性能评价   总被引:2,自引:1,他引:1  
冯玉杰  李贺  王鑫  何伟华  刘尧兰 《环境科学》2010,31(11):2804-2809
利用兼性滚管法分离了折流板空气阴极微生物燃料电池(BAFMFC)A、B两格室的阳极生物膜,共获得19株纯菌.将菌株投加至无菌立方型反应器中,检验其产电特性.利用交流阻抗法测量各纯菌电池的内阻,结果显示38个电池的欧姆内阻为25Ω±5Ω,说明了各电池的产电差异来源于菌株本身的活性.其他运行条件均保持不变,在1000Ω外阻下,7株纯菌电池的输出电压在200mV以上.其中,A格室产电活性最高的菌株(A2)产生的最大电压为328mV,输出的最大功率密度为165.1mW/m2,B格室产电活性最高的菌株(B1)最大电压为241mV,最大功率密度为214.4mW/m2.原子力显微镜和脂肪酸快速鉴定表明,A2为肠杆菌科的杆菌,B1为厚壁菌门的芽孢杆菌.  相似文献   

4.
电极构型对空气阴极生物燃料电池发电性能的影响   总被引:10,自引:5,他引:5  
尤世界  赵庆良  姜珺秋 《环境科学》2006,27(11):2159-2163
在空气阴极生物燃料电池(ACMFC)中,从阴极扩散进入阳极的氧气能够被兼性微生物作为电子受体还原,进而导致电子损失严重.本研究利用葡萄糖作底物,对2种不同电极构型的空气阴极生物燃料电池ACMFC1和ACMFC2的功率输出和电子回收进行了比较研究.结果表明,ACMFC1的内阻为302.14Ω,阳极电位为-323mV,最大功率密度为3 070 mW/m3;ACMFC2的内阻为107.79Ω,阳极电位为-442mV,最大功率密度达到9 800 mW/m3.在间歇条件下,ACMFC2可以连续运行220h,电子回收率为30.1%;而ACMFC1只能运行不到50h,电子回收率为9.78%.因此,合理的设计空气阴极生物燃料电池电极构型可以减小内阻,增大电池电动势进而增大功率输出,提高电子回收率.  相似文献   

5.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果.  相似文献   

6.
“三合一”微生物燃料电池的产电特性研究   总被引:34,自引:0,他引:34  
曹效鑫  梁鹏  黄霞 《环境科学学报》2006,26(8):1252-1257
为了降低内阻,尽可能提高微生物燃料电池的输出功率,提出了一种将阳极、质子交换膜和阴极热压在一起的"三合一"膜电极形式的微生物燃料电池,并考察了其在接种厌氧污泥条件下对乙酸自配水的产电特性.该"三合一"电池在稳定运行条件下电池内阻约为10~30Ω,远低于现已报道的其它形式的微生物燃料电池的内阻.目前该"三合一"型微生物燃料电池最大输出功率密度约300 mW·m-2,库仑效率约50%.试验结果表明,在一个间歇运行周期中,电池内阻增加是引起输出电压降低的最主要原因.同时在不同的外阻条件下,需要降低极化的重点不同.  相似文献   

7.
利用双室微生物燃料电池处理模拟废水的产电特性研究   总被引:2,自引:1,他引:1  
本实验通过研究电池的启动过程、阳极有机物降解率和阴极Cu2+的去除率,评价了微生物燃料电池(microbial fuel cell,MFC)的产电和处理废水性能.以模拟糖蜜废水作为阳极基质,模拟电镀废水作阴极电子受体,建立简单的双室微生物燃料电池.结果表明在外电阻为800Ω的情况下,电池得到最大电压417.00 mV,从极化曲线上获得最大输出功率密度44.17mW.m-2,内阻为293Ω.电池在第五周期时,COD去除率也达到最高47.31%.在第四周期内,Cu2+最大的去除率为59.76%.综上所述,MFC在处理有机废水和电镀废水方面具有可行性.  相似文献   

8.
填料型微生物燃料电池产电特性的研究   总被引:6,自引:0,他引:6  
将石墨和碳毡作为阳极填料组装成填料型微生物燃料电池,其启动期在1 d左右,低于平板型微生物燃料电池的启动期.碳毡作为填料时,微生物燃料电池的最大产电功率密度为1 502 mW/m2(37.6 W/m3),优于石墨作为填料的MFC.将碳毡与碳纸烧结一体以提高填料型微生物燃料电池阳极的导电性,与平板型微生物燃料电池相比,其面积内阻从0.071 Ω穖2下降到0.051 Ω穖2,最大电流密度从3 000 mA上升到8 000 mA,最大产电功率密度从1 100 mW/m2(27.5 W/m3)上升到2426 mW/m2(60.7W/m3),阳极电势平均下降100 mV.循环流量影响填料型微生物燃料电池的产电能力,当流量低于1 mL/min时,其产电功率密度随流速降低而下降.填料型微生物燃料电池在外电阻为600 Ω下长期稳定运行30 d以上,其库仑效率约为10.6%.  相似文献   

9.
梅卓  张哲  王鑫 《环境科学》2015,36(11):4311-4318
阳极-隔膜-阴极的"三合一"膜电极结构能够最大程度减小阴阳极间距,提高微生物燃料电池(microbial fuel cell,MFC)的输出功率.为进一步提高MFC性能,本研究使用非贵金属材料构建了辊压"三合一"膜电极系统,其欧姆内阻降低至3~5Ω.以乙酸钠为底物,MFC的最高功率密度达到446 m W·m-2.向阳极内添加固体小球(如聚苯乙烯球和玻璃微球)可在辊压过程中增加阳极表面和内部的大孔,强化电解液向阴极的传递从而使MFC的功率密度提升10%.添加阳离子交换树脂能够进一步强化阳极内部的质子传递,提高阴极电位,从而将功率密度提升至543 m W·m-2.此外,阳极内添加阳离子交换树脂还可提高电池运行的稳定性和库仑效率.  相似文献   

10.
剩余污泥生物燃料电池输出功率密度的影响因素   总被引:7,自引:2,他引:5       下载免费PDF全文
对于以剩余污泥为燃料的微生物燃料电池(MFC),考察了可能影响输出功率密度的相关因素.结果表明,污泥体积对燃料电池以面积为单位的输出功率密度影响效果不明显.电池阳极面积越大,输出功率密度反而越小.采用NaCl为离子添加剂时,随着投加量的增加,输出功率密度相应增加,最大为173.40mW/m2;但采用K2HPO4为离子添加剂时,输出功率密度则先增加后降低,可能是磷浓度的增加影响了系统微生物的活性.泥水比1:2时,最大功率密度为163.35mW/m2,稀释比增加或减少,输出功率密度均相应降低.阴阳极距离从5cm缩小到0.5cm,输出功率密度从50.14mW/m2增加到84.02mW/m2,说明O2的扩散未对阳极厌氧微生物造成影响.采用最优条件时,输出功率密度为256.12mW/m2.  相似文献   

11.
微生物燃料电池处理废水时的产电性能研究   总被引:2,自引:0,他引:2  
设计了一个经典的双室微生物燃料电池,并考察了其在接种厌氧污泥条件下对葡萄糖模拟废水的产电性能。试验主要考察了电池系统在不同的电极材料及不同COD浓度下的产电性能及废水处理效率。结果表明,该电池在初始COD为1000mg/L,以石墨为电极的运行条件下产电性能最好,最大电流密度为4.4mA/m2。在不同的COD浓度下,该系统对废水中COD的去处率都稳定在70%。另外实验还考察了好氧污泥代替空气作为电子受体后电池系统的产电性能及废水处理效率。在该条件下,微生物燃料电池的产电性能得到了显著的提高,输出电流密度约为17.3mA/m2,同时其对废水中的COD去除率达到了82%。  相似文献   

12.
构建了一种基于升流式厌氧污泥床反应器(UASB)的微生物燃料电池(MFCs),利用UASB高效去除COD能力及连续进样方式,获得稳定电能输出。考察了水力停留时间、进液方式、电极材料、离子交换膜种类、溶液离子强度等因素对于MFCs性能的影响。实验结果表明:在水力停留时间6h、连续进液、高纯石墨板电极以及均相阳离子交换膜条件下,连续运行3个月,放电功率稳定在145mW/m^2,开路电压0.78V,放电电流最高可达321mA/m^2。  相似文献   

13.
A novel single cathode chamber and multiple anode chamber microbial fuel cell design(MAC-MFC)was developed by incorporating multiple anode chambers into a single unit and its performance was checked.During 60 days of operation,performance of MAC-MFC was assessed and compared with standard single anode/cathode chamber microbial fuel cell(SC-MFC).The tests showed that MAC-MFC generated stable and higher power outputs compared with SC-MFC and each anode chamber contributed efficiently.Further,MAC-MFCs were incorporated with different wastewaters in different anode chambers and their behavior in MFC performance was observed.MAC-MFC efficiently treated multiple wastewaters simultaneously at low cost and small space,which claims its candidature for future possible scale-up applications.  相似文献   

14.
The effect of pre-treatment of dewatered sludge using different nitrite concentrations and pH for microbial fuel cell (MFC) application was investigated. The results show that the addition of nitrite was feasible to increase the solubilization rate of the sludge and may reduce mass transfer limitation at the anode. This helped the MFC to reach higher voltage and to generate more power. The higher free nitrous acid (FNA) concentration under the acidic condition helped to increase sludge solubilization. However, under an alkaline condition, during which the FNA concentration was relatively low, the solubilization of the sludge was higher. The highest voltage and power density produced was 390?mV and 153?mW/m2, respectively, with the addition of nitrite at 100?mg-N/L and pH?9. Furthermore, it was found that elevated levels of FNA could inhibit electrogenic bacteria thus reducing power generation.  相似文献   

15.
外加酶强化剩余污泥微生物燃料电池产电特性的研究   总被引:4,自引:1,他引:3  
以剩余污泥作为接种液和基质,探讨了外加酶(中性蛋白酶、α-淀粉酶)强化单室型剩余污泥微生物燃料电池产电效率的可行性,研究了酶投加量对微生物燃料电池的产电特性及剩余污泥减量的影响.结果表明,在相同条件下,实验组产生的最大功率密度远远高于对照组;当酶的总投加量为10 mg.g-1时,最大输出功率密度及污泥水解效率达到最大,即中性蛋白酶组的最大功率密度、库仑效率、TCOD去除率、TSS去除率、VSS去除率分别为507 mW.m-2、3.98%、88.31%、83.18%、89.03%,而α-淀粉酶组则分别为700 mW.m-2、5.11%、94.09%、98.02%、98.80%.本实验采用向剩余污泥中投加酶的方法,成功增强了微生物燃料电池的产电效率,同时对剩余污泥有效地进行了处理,为微生物燃料电池的实际应用提供了新途径.  相似文献   

16.
阳极微生物种类及群落结构都会对微生物燃料电池的产电及底泥修复效果产生显著影响,因此,对微生物燃料电池阳极微生物群落多样性进行研究分析显得尤为重要.本研究利用风车草(Clinopodium Urticifolium)或短叶茳芏(Cyperus Malaccensis)两种植物结合受污染河涌底泥构建了湿地植物-沉积物微生物燃料电池(P-SMFC),同时构建无植物的沉积物微生物燃料电池(SMFC)作为对照,共3个电极处理组,每组3个平行.系统运行7个月后,分析其产电特性,并利用高通量测序对3个电极处理组生物膜微生物群落多样性进行分析,以探讨P-SMFC产电特性、阳极生物膜群落多样性及不同处理组之间群落结构的差异.结果表明,3个处理组中微生物群落结构存在明显差异,风车草和短叶茳芏两种植物的引入均会对微生物燃料电池系统中的细菌及古菌群落结构产生影响.植物的存在一方面有助于阳极生物膜各类细菌及古菌的生长,另一方面植物也有助于产电系统中阳极生物膜细菌及古菌群落多样性的增加,且风车草相比短叶茳芏而言,更能增加系统的古菌群落的多样性.在细菌群落分析中,3个处理组中都以变形菌门Proteobacteria为优势菌群,其次为绿弯菌门Chloroflexi,在所有菌属中以土杆菌属Geobacter的相对丰度最高,分别为PSM1处理组11.50%、SM处理组14.33%、PSM2处理组8.53%,为其优势菌属,但P-SMFC中该菌属的丰度相对较低.在古菌群落分析中,3个处理组中都以广古菌门Euryarchaeota的相对丰度最高,分别为PSM1处理组79.83%、SM处理组80.20%、PSM2处理组81.67%,成为优势菌门,其中以甲烷八叠球菌目Methanosarcinales的Methanosaeta属、甲烷杆菌目Methanobacteriales的Candidatus Methanoregula属的相对丰度最高,为其优势菌属.且Methanosaeta的相对丰度分别达到PSM1处理组21.43%、SM处理组25.00%、PSM2处理组23.16%,P-SMFC处理组的丰度相对较低;Candidatus Methanoregula的相对丰度分别为PSM1处理组13.05%、SM处理组11.73%、PSM2处理组16.02%,P-SMFC处理组的丰度相对较高.  相似文献   

17.
微生物燃料电池中产电微生物电子传递研究进展   总被引:3,自引:0,他引:3  
微生物燃料电池集产电和污水净化为一体,作为一种新型的能源回收技术得到人们的广泛关注。从微生物燃料电池工作原理来看,电子能否顺利地传递到阳极表面对于电流的产生起着关键作用。因此,本文重点阐述了电子在产电微生物体内产生的途径、电子从微生物体内向阳极传递的不同方式以及阳极材料对产电微生物附着和电子传递的影响。从生物化学、电化学和材料学上对产电微生物体内的电子到阳极整个过程进行全面的综述。明确电子传递的关键环节,为新型高效阳极材料的开发提供思路。  相似文献   

18.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:6,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号