首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 142 毫秒
1.
三江源区径流退水过程演变规律   总被引:1,自引:0,他引:1  
利用三江源区1960~2009年间的月径流数据,使用数字滤波法进行基流分割并使用Depuit-Boussinesq方程进行退水系数计算,同时对径流量、基流量、退水系数分别进行Mann-Kendall趋势检验。结果显示:(1)过去50 a间黄河与澜沧江年内径流量显著减少,而长江源区径流变化趋势不明显;(2)三江源区冬季枯水期径流量主要受基流控制,基流占冬季径流的比值最高可达100%,黄河源区与澜沧江源区过去50 a来基流在不断减少基流的变化趋势和突变点与径流呈现出高度一致;(3)在过去50 a,长江源区的年径流退水过程正在减缓,气候变化影响下,降雨是三江源区径流退水过程的主要影响因素,降雨量的增加会导致退水系数的减小,而温度对三江源区的退水过程影响存在着不确定性。研究为揭示气候变化下三江源区径流退水过程的演变过程提供了理论参考。  相似文献   

2.
基于1999-2010年SPOT VEGETATION旬值NDVI数据,并结合偏相关分析、线性趋势等方法对三江源地区影响植被覆盖变化的主要气候因素进行了判断,从而利用主要气候因子进行线性拟合,进而得到残差趋势来反映人类活动对植被覆盖的影响。结果表明:①1999-2010年三江源地区平均植被覆盖由东向西逐渐减小。12年间,植被覆盖呈改善趋势,平均变化率为0.047/10a。山地草原改善最为明显,其次为高寒草甸、高寒草原和常绿针叶林,亚高山、高山植被,矮半灌木荒漠改善趋势最不明显。黄河源区变化率最高,其次是长江源区和澜沧江源区,高寒荒漠草原区改善效果最差。②三江源地区大部分区域植被覆盖主要受气温影响,其次在黄河源区北部、长江源区中东部分布有降水影响区以及水热共同影响区。常绿针叶林受水热共同影响,高山、亚高山以及高寒植被主要受气温影响,山地草原主要受降水量影响。③1999-2010年,三江源地区平均残差趋势为0.018/10a,表明人类活动对三江源地区的植被覆盖变化呈正影响。人类活动对山地草原的正影响作用最强烈,其次是山地常绿针叶林,其他由大到小依次为高寒草甸、高寒草原、高山植被、亚高山植被和高寒匍匐矮半灌木荒漠。黄河源区和澜沧江源区受人类活动的正影响作用较强且相当,其次为长江源区,高寒荒漠草原区受人类活动影响最小。  相似文献   

3.
以1961~2007年三江源区的气象及径流资料为基础,采用M K法和R/S分析法分析三江源区气候及水文要素变化趋势及进行未来变化趋势预测,并采用主成分分析法判定径流过程的主要驱动要素。研究表明:三江源区气温普遍显著升高,水面蒸发和地温随着气温的升高也不断增加,降水的增加并不显著,而年径流尤其是夏秋季节径流存在明显减小的趋势。R/S分析结果表明气候和水文要素未来总体的变化趋势与过去一致。三江源区径流过程是由气温起主导作用,径流对气温变化较降水变化更为敏感。本研究将为三江源区水资源开发利用及优化配置提供科学借鉴,同时为三江源区的生态建设和保护提供参考依据  相似文献   

4.
基于长江源区直门达水文站1957~2016年夏季径流量实测资料、1957~2016年的青藏高原夏季风指数及南亚夏季风指数等资料,利用小波分析、突变检验、滑动相关系数等方法分析了长江源区夏季径流量的变化特征及与高原夏季风和南亚夏季风的关系。研究发现:近60年长江源区夏季平均流量呈增加趋势,在1957~1997年夏季平均流量整体偏少,1998~2016年流量开始增多;长江源区夏季平均流量在1995年前后发生了一次由减少趋势转为增多趋势的显著突变。长江源区夏季平均流量在年际变化上与高原夏季风和南亚夏季风存在显著的正、负相关关系,并且高原夏季风和南亚夏季风存在显著的负相关关系。高原夏季风和南亚夏季风通过大气环流变化来影响源区夏季降水,进而影响其径流。因此对高原夏季风以及南亚夏季风的研究可为预测长江源区流域内水文过程以及水资源的变化提供一定的科学参考。  相似文献   

5.
长江流域土壤保持能力时空特征   总被引:1,自引:0,他引:1  
利用MODIS-NDVI数据、地面气象站数据等,采用通用土壤流失方程计算了长江流域2000~2010年土壤保持量,并基于GIS平台与GeoDa软件,辅以Morans I指数以及一元线性回归系数等方法分析了长江流域土壤保持能力的时空分布特征。结果表明:(1)长江源区以及中下游沿岸至长江入海口地区的土壤保持量最低(≤560t/hm2),土壤保持量高值区(≥2 400t/hm2)主要分布于上游四川盆地周围以及中下游长江以南地区;(2)长江流域土壤保持量在市域单元上存在明显的空间聚集现象,"低—低"聚集区分布在长江源区、武汉西部以及流域入海口,"高—高"聚集区主体分布在流域上游与江西南部;(3)土壤保持量年际变化呈增加趋势的区域占62%,其中呈快速增加趋势(b5)的地区分布在陕西南部、湖南西北部、江西东部以及四川东部,呈减少趋势的区域占38%,主要分布于流域上游以及中下游长江以南部分地区。  相似文献   

6.
近40年阿克苏河流域径流变化特征及影响因素研究   总被引:6,自引:0,他引:6  
利用1961—2000年近40a的气温、降水、冻土深度等逐月资料及年蒸发量资料和20世纪50年代初或中期建站起到90年代中期径流逐月实测资料.分析20世纪下半期阿克苏河流域径流变化特征及其与气候变化的关系.同时分析人类活动对径流变化的影响作用。研究表明:阿克苏河流域普遍存在升温的变化趋势,尤其是冬季升温明显;同时导致冻土层温度的升高和冻土退化;流域内降水增加趋势明显。1990年以后径流增加趋势更加明显.从年内变化分析来看。流域内各水文站春、夏季径流有明显的增大趋势;秋、冬季径流减少明显;分析径流的变化特点.主要还受到流域地表状况变化、大面积开荒及上游水库调节等人类经济活动作用的影响。  相似文献   

7.
选用青海省三江源地区1964~2013年14个气象台站观测的基本气象数据,利用线性倾向性估计和Mann-Kendall检验方法等分析了三江源地区蒸发皿蒸发量的时空变化和变化趋势,并以完全相关分析方法进行蒸发量上升成因分析。结果表明:三江源地区年蒸发量总体呈显著上升趋势,其线性变化速率为30.1 mm/10 a,夏秋冬季蒸发量均呈显著上升变化,春季变化趋势不明显,夏季和秋季蒸发量上升对年蒸发量上升贡献最大;逐月蒸发量变化趋势均增加,但幅度各异;冬季蒸发量在2011年发生了突变,其余各季和年均未发生突变.蒸发量月际变化规律明显,表现为双峰型分布,双峰出现在5月和7月,最小值出现在1月;季节变化也十分明显,夏季蒸发量最大,其次为春季和秋季,冬季蒸发量最少,表明春夏两季蒸发量的多少对三江源地区水循环起重要作用。年和四季蒸发量呈现出西北部少,东南部及东北部多的分布特点,气候变化速率分布自西向东逐渐增大。蒸发量年际变化不剧烈,年蒸发量变异系数从西北向东南逐渐增大,四季蒸发量变异系数空间分布明显不同。年蒸发量与平均气温总体上呈正相关,与气温日较差、相对湿度呈负相关,平均气温上升、气温日较差和相对湿度下降是三江源地区蒸发量上升的主要因素。  相似文献   

8.
提出一种拓展径流敏感性分析方法,进行季尺度气候变化和人类活动对径流变化影响的定量评价。以径流变化二阶泰勒展开式中的混合偏导项作为气候变化与人类活动耦合作用的度量,从而分离出气候变化、人类活动及两者间耦合作用对径流影响的程度,并采用包含融雪模块的ABCD模型,计算土壤蓄水量和地下水储量变化量。以拉萨河为研究实例,结果表明:近60年来,气候变化是导致拉萨河枯季径流增加的主导因素,其次是人类活动和耦合作用项;气候变化导致枯季径流增加,人类活动及耦合作用项引起枯季径流不同程度的减少。  相似文献   

9.
明晰径流演变及其驱动力对流域水资源可持续利用具有重要意义。以白河流域为研究区,基于TFPW-MK趋势检验法分析了研究区1982~2018年水文气象、植被和社会经济等多要素的演变趋势,并进一步利用考虑多要素时变特征的Budyko框架量化了多要素对径流变化的贡献率。结果表明:(1)近37年来,白河流域径流以-2.83 mm/a的速率减少;Budyko水热耦合参数n呈波动变化,总体以0.041/10 a的速率增加;(2)参数n与降水量及工农业用水量相关性较高,拟合度R2达0.97。引入时变参数n可提升径流模拟效果;(3)白河流域径流对降水变化最为敏感,对工业用水量最不敏感;1991~2018年间降水对径流减少的贡献率由78.7%逐步降低至20.8%,而潜在蒸散量与农业用水量对径流减少的贡献率则逐步增加,分别由7.6%和4.1%增加至17.4%和37.5%;(4)研究时期内气候变化对径流的影响逐渐减弱,其贡献率由86.3%减少至38.3%。  相似文献   

10.
长江流域径流趋势变化及突变分析   总被引:45,自引:0,他引:45  
选取长江流域重要控制站宜昌、汉口和大通站,分别应用1882~2000年、1870~2000年和1950~2000年的月平均流量资料,对年代际、月径流、季节性径流的变化以及径流的变化趋势及突变进行了分析研究,并使用非参数Mann Kendall法来检验径流的趋势变化。趋势分析表明,20世纪90年代长江流域径流呈微弱增加趋势,但不显著且地区分布不均,中上游减少,下游增加;而季节性夏季和冬季径流增加趋势明显,尤其是7月和1月径流增加最突出;更重要的是90年代汛期径流也呈现出增加趋势,汛期径流的增加在一定程度上加大了洪灾发生的可能性,这可能是导致洪灾频繁的原因之一。突变分析指出,宜昌和汉口站从1926年开始径流经历了一个明显减少的变化,这与20世纪20年代初,北半球突然变暖,长江上游地区呈现降温、降水减少趋势一致。  相似文献   

11.
元江-红河干流径流时序特性及突变分析   总被引:4,自引:0,他引:4  
以元江干流主要控制性水文站蛮耗站在1956~2000年观测记录共45年的径流量序列数据为基础,运用Mann Kendall、有序聚类和累积距平等统计方法分析元江径流分布规律及其变化的基本特征。结果表明:实测径流年内分配不均,年际变化不大,年径流变差系数为0263。实测径流量序列存在明显的阶段性和缓慢上升趋势。对元江实测径流序列进行还原处理得到天然径流量,发现其与实测径流的差异不大,多年平均水资源耗水量仅占天然径流量的292%。年径流量和径流系数在1965年和1994年前后都发生两次增加突变;而年降水量与流域年蒸散发量没有发生突变。归一化植被植物变化表明元江干流植被覆盖在1993年左右被破坏较为严重。因此,得出径流变化趋势主要与降雨有关,两次突变主要受人类对下垫面改变的影响。  相似文献   

12.
可变下渗能力模型VIC是基于单元网格的分布式水文模型,易于与气候模式进行耦合,从而揭示气候变化对水循环的复杂影响,为分析气候变化情景下流域洪水的响应特征提供技术支撑。作为研究工作的第一步,构建了基于5 km×5 km网格分辨率的西苕溪流域VIC径流模拟模型。利用流域出口横塘村水文观测站1990~2000年日流量观测数据并结合西苕溪流域的汇流特点,采用Dag Lohmann汇流模型进行参数率定和验证。模拟结果表明:VIC模型对西苕溪流域日、年径流量的模拟值与观测值吻合良好,率定期和验证期的多年平均年径流相对误差Er分别为077%和343%,模拟日或月流量的确定性系数和Nash Suttcliffe系数都大于075,特别是对洪水年汛期流量过程的模拟,确定性系数均大于080,模型对洪水的模拟可信性较高  相似文献   

13.
1950年以来鄱阳湖流域水沙变化规律及影响因素分析   总被引:1,自引:0,他引:1  
运用Mann-Kendall趋势检验法和回归分析等方法,对鄱阳湖流域赣江外洲站、抚河李家渡站、信江梅港站、饶河虎山站和修水万家埠站1950~2012年径流量和1956~2012年输沙量的变化进行了系统分析,并探讨了水沙变化的原因。研究结果表明:(1)鄱阳湖流域五大河流水沙的趋势变化特征相异,除李家渡站径流无明显趋势变化外,其余各站均呈不显著的增加趋势(未超过α=0.05显著性检验临界值);外洲站、梅港站和李家渡站输沙量呈减少的趋势变化,且1985年以后呈显著的减少趋势,而虎山站和万家埠站输沙量在1965~1999年呈不显著的增加趋势,1999年以后才开始减少;(2)入湖总水量呈不显著的增加趋势,发生突变的年份为1992年;入湖总沙量呈显著的减少趋势,发生突变的年份为1996年,入湖总沙量突变滞后于入湖总水量;(3)流域径流量变化主要受降雨量的影响,而输沙量变化主要受水土保持和水库建设等人类活动的影响,且水库拦沙是鄱阳湖流域输沙量减少的主要原因。  相似文献   

14.
气温对长江上游巴塘站年径流的影响分析   总被引:1,自引:0,他引:1  
为了深入分析气温对长江上游年径流的影响和解释青藏高原冰川融水再冻结现象的物理机制,采用对位置、尺度、形状的广义可加模型(简称GAMLSS)建立控制因素降水、气温、ATD与年径流量之间的关系。在GAMLSS框架下,气温影响因子可以用两种形式表示,一种是直接采用气温,另一种是采取ATD指数(累积气温亏损值)。通过比较不同解释变量组合下的GAMLSS模型,进而研究气温对长江上游巴塘站1960~2012年的年径流影响。结果表明:基于ATD的回归模型,在年径流序列服从对数正态分布假设的条件下拟合效果最优。与气温值相比,ATD指数能更有效地解释长江上游径流变化的特征和冰川产流的物理机制。研究成果对长江上游年径流预报、高原气候下的产流特征分析具有理论意义。  相似文献   

15.
三峡工程对下荆江径流变化影响分析   总被引:1,自引:0,他引:1  
下荆江作为长江最不稳定的江段之一,三峡工程的运行必然会对该江段的水文过程产生深远影响。以监利水文站日均流量数据为基础,研究分析了1983~2012年近30 a来下荆江年径流量、各月月均流量的变化趋势。结合三峡工程的阶段性蓄水,以蓄水前流量的自然波动幅度为基础,定量分析了三峡工程对下荆江径流变化的影响程度。趋势性分析结果显示,近30 a来下荆江年径流量呈波动性变化,无显著趋势。1~3月月均流量有极显著的增加趋势,10月份有极显著的下降趋势。从三峡工程蓄水前后各月份月均流量的绝对变化量来看,10、7和8月的变化量最大,但结合三峡工程蓄水前各月月均流量的自然波动幅度,相对变化率最大的月份为1、2和10月,其相对变化量均超过其自然波动幅度的1.5倍。对于相对变化量较大的月份可能产生的潜在影响亟需进一步的深入研究  相似文献   

16.
利用长江上、下游代表水文站宜昌、大通站1951~2008年逐月月均流量资料,采用线性倾向估计、非参数Mann Kendall检验、滑动t 检验等方法,对两站9月至翌年4月(三峡蓄水期及枯季)各月多年来的流量变化趋势进行探讨,分析了流量发生突变的时间,并对各月两站流量间关系进行初步的研究。研究表明:宜昌、大通各月流量多年变化趋势基本一致,多年来,两站9~10月流量减少,1~3月流量显著增加,流量突变大多发生在20世纪80年代,流量的变化主要与水利工程的建设及流域降雨量的变化有关;宜昌、大通站两站流量存在一定的内在关系,9~10月份两站流量间关系较好,其余月份宜昌、大通两站流量的比值与大通流量间关系较好,所得关系式可初步用于流量预测  相似文献   

17.
基于1989~2011年的长时间序列卫星遥感数据,利用综合水体信息提取方法提取了洞庭湖区6~9月主汛期的水体信息,通过较高分辨率卫星遥感数据验证,水体面积提取精度达到90%以上。洞庭湖年平均径流入湖量、NCEP再分析资料计算的湖体上空和流域累计月平均降水量分别与水体面积变化的关系进行分析,结果表明: 1989~2011年间洞庭湖水体面积最大值主要分布在7和8月,这两个月也是洞庭湖区域发生洪涝灾情的高风险期;洞庭湖水体面积与年平均径流入湖水量的相关系数为0.67(置信度为95%);2003年以前,洞庭湖主汛期间水体面积波动比较大,2003年三峡水库运行后,洞庭湖的面积波动有所减少;洞庭湖上空累计月平均降水量对于水体面积存在正相关性,相关系数为0.68(置信度为99%);2003年以前,洞庭湖流域累计月平均降水量和水体面积相关系数为0.50(置信度为90%),2003年三峡水库运行后,两者相关性有所减弱。  相似文献   

18.
For recent years,runoff generation and hydrological processes in Hailiutu River basin have been greatly changed by climate change and human activity,especially water and soil conservation construction.In this study,the trends in precipitation,evapotranspiration(ET)and river runoff as well as the effects of precipitation change and human activity on runoff variation have been studied.The results showed that during 1960-2000,annual precipitation and river runoff,monthly precipitation and ET in September and October as well as monthly runoff in all months showed a significant decrease.In addition,peak flow and base flow had a large decrease.Under the joint influence of precipitation change and human activity,the mean annual runoff decreased by 35 million m3 from the baseline period(1960-1985)to the change period(1986-2000),which accounted for 60.9%and 39.1%of the total runoff decrease,respectively.Precipitation change played a primary role in the decrease of annual runoff whereas human activity,particularly water and soil conservation construction,also had remarkable impacts on runoff variation.  相似文献   

19.
For recent years, runoff generation and hydrological processes in Hailiutu River basin have been greatly changed by climate change and human activity, especially water and soil conservation construction. In this study, the trends in precipitation, evapotranspiration (ET) and river runoff as well as the effects of precipitation change and human activity on runoff variation have been studied. The results showed that during 1960–2000, annual precipitation and river runoff, monthly precipitation and ET in September and October as well as monthly runoff in all months showed a significant decrease. In addition, peak flow and base flow had a large decrease. Under the joint influence of precipitation change and human activity, the mean annual runoff decreased by 35 million m3 from the baseline period (1960–1985) to the change period (1986–2000), which accounted for 60.9% and 39.1% of the total runoff decrease, respectively. Precipitation change played a primary role in the decrease of annual runoff whereas human activity, particularly water and soil conservation construction, also had remarkable impacts on runoff variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号