首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We select a city that is one of the ten major coal bases in China and analyse the prospective development of the coal industry in this region. We introduce Stochastic Programming (SP) to the coal industry to manage uncertainties complicating the accurate prediction of the industry's development. First, we establish a coal industry system in the region and analyse this system. Second, we set up a System Dynamic-Stochastic Programming (SD-SP) model based on the coal industry in the region. Third, we set up the SD-SP model with sensitivity analysis to the coal industry. Finally, we complete the simulation by importing optimum parameters and contrasting the optimisation scheme with the current programming scheme.  相似文献   

2.
以86台中小型燃烟煤层燃炉(≤65 MW)的燃料特性分析数据和NOx排放实测数据为基础,通过统计分析方法,研究了锅炉出力、过量空气系数、燃煤挥发分、燃煤氮含量对NOx排放浓度的影响,分析了我国中小型燃烟煤层燃炉NOx的排放与管理控制现状。结果表明,中小型燃用烟煤层燃炉NOx平均排放浓度为324.6 mg/m^3;锅炉出力对NOx排放浓度不具有显著影响;燃煤挥发分增高,NOx排放浓度降低;过量空气系数和燃煤氮含量增大,NOx排放浓度增高;并建议在国家层面上尽快制订燃煤锅炉NOx排放标准限值。  相似文献   

3.
砷和硒是煤中的易挥发有毒微量元素。由于砷和硒在燃煤烟气中的浓度极低以及实验条件的限制 ,目前化学热力学平衡分析已成为预报烟气中砷和硒等有毒元素形态分布的主要理论分析方法。本文综述了热力学平衡分析方法应用于砷和硒在燃煤过程中形态转化和平衡分布等方面的研究进展。首先用于热力学平衡分析的是只含有砷或硒一种微量元素和煤中主量元素及氯元素的简单体系 ,并假设烟气中只有理想气体组成的气相和纯凝聚相的理想模型。然而是否考虑砷和硒与其他微量、主量或次量元素的相互作用 ,砷和硒所有可能存在的反应 ,以及在熔融相砷和硒与熔融物的结合会严重地影响模型的预报结果 ,因此 ,目前热力学平衡体系已发展成为含有包括砷和硒在内的多个微量元素和煤中所有主量、次量元素 ,以及包括熔融相在内的非理想多相复杂体系  相似文献   

4.
研究了采自西南3省、1市17个选煤厂的原煤和洗精煤样品,分析了灰分、氟和砷含量,探讨了选煤脱除氟、砷的机理和影响因素。结果表明,选煤能有效降低煤中氟、砷的含量,应用前景广阔。  相似文献   

5.
煤矸石是煤炭在开采、洗选过程中产生的固体废弃物,其中二氧化硅、氧化铝和碳占到矸石总量的90%以上,又是一种可以利用的资源。实验以山西潞安煤矿的洗矸为原料,采用SEM、IR和XRD等分析测试手段对不同煅烧温度下的煤矸石进行微观形貌、化学键变化和矿物组成的分析研究,确定氧化铝的活化温度区间;并根据煤矸石的活化机理,选择提高氧化铝溶出率的添加剂。实验结果为:煤矸石中氧化铝的活化温度区间为600~850℃;酸浸过程中添加氟化钠可以打开煤矸石中的SiO2—Al2O3,使氧化铝溶出率达到90%以上,和通常条件下氧化铝的溶出率相比提高20%左右。本研究为煤矸石高值利用提取氧化铝提供了技术基础,也为粉煤灰等低铝含量矿物的开发利用提供借鉴。  相似文献   

6.
粉煤灰资源化特性及路面工程应用技术研究   总被引:8,自引:0,他引:8  
对粉煤灰的各项技术参数进行了试验研究,揭示出粉煤灰的不同成分和形貌对其资源化特性的影响规律,初步完成了消除不利于粉煤灰资源化的有害成分炭的优化实验工作,进行了脱炭粉煤灰混凝土配合比等试验研究,并在路面修复工程中予以应有,结果表明,经脱炭处理的粉煤灰应用于混凝土工程可以明显改善混凝土的工作性能,实际道路运营和技术性能符合路面工程的要求,具有重大的经济效益和环境效益。  相似文献   

7.
新型复合垃圾衍生燃料的制备及性能分析   总被引:1,自引:0,他引:1  
为了提高城市生活垃圾资源化利用的效率,采用室温冷压有粘结剂成型的方法将城市生活垃圾和煤按一定的配比制成新型复合垃圾衍生燃料,研究了成型压力、配比对衍生燃料的热稳定性、机械强度、粘结性以及发热量的影响.试验结果表明,在生活垃圾中加入煤可有效改善衍生燃料性能,增加其热值,在成型压力为25 MPa,煤配比为20%时复合衍生燃料的性能最优.  相似文献   

8.
以86台中小型燃烟煤层燃炉(≤65 MW)的燃料特性分析数据和NOx排放实测数据为基础,通过统计分析方法,研究了锅炉出力、过量空气系数、燃煤挥发分、燃煤氮含量对NOx排放浓度的影响,分析了我国中小型燃烟煤层燃炉NOx的排放与管理控制现状。结果表明,中小型燃用烟煤层燃炉NOx平均排放浓度为324.6 mg/m3;锅炉出力对NOx排放浓度不具有显著影响;燃煤挥发分增高,NOx排放浓度降低;过量空气系数和燃煤氮含量增大,NOx排放浓度增高;并建议在国家层面上尽快制订燃煤锅炉NOx排放标准限值。  相似文献   

9.
The release of unburnt coal particles and associated polycyclic aromatic hydrocarbons (PAHs) may cause adverse impacts on the environment. This study assessed variations in the concentration and composition of PAHs in a set of fifty coal samples from eleven coal basins worldwide. The maximum PAH concentrations at high volatile bituminous rank were recorded in samples from a single basin. Considering the entire sample set, the highest PAH concentrations were in fact found outside of this rank range, suggesting that the maceral composition and thus the coal’s origin also influenced PAH concentrations. The examination of the PAH compositions revealed that alkylated 2-3 ring PAHs remain dominant compounds irrespective of coal rank or origin. Multivariate analysis based on PAH and maceral content, bulk and maturity parameters allowed the recognition of seven groups with different rank and origin within the coal sample set.  相似文献   

10.
为了研究输煤皮带转载点密闭罩内流场对吸尘效果的影响,采用Fluent软件对某转载点密闭罩内气固两相流动情况进行了数值模拟。通过气流分布和煤尘浓度分布的分析,发现溜槽转折处较大的气流偏转会增加煤尘起尘量和导致局部煤尘积聚,吸尘罩的开口角度对吸尘效果也有较大影响。为了疏导气流并加强吸尘效果,提出了溜槽转折处和吸尘罩的结构优化设计方案。研究表明,改进后气流分布更加均匀,吸尘效果有所提高,从而为转载点密闭罩的优化设计提供了参考。  相似文献   

11.
In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world’s largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the “dangerous area” in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.  相似文献   

12.
Fernandez A  Wendt JO  Wolski N  Hein KR  Wang S  Witten ML 《Chemosphere》2003,51(10):1129-1137
This paper is concerned with health effects from the inhalation of particulate matter (PM) emitted from the combustion of coal, and from the co-combustion of refuse derived fuel (RDF) and pulverized coal mixtures, under both normal and low NOx conditions. Specific issues focus on whether the addition of RDF to coal has an effect on PM toxicity, and whether the application of staged combustion (for low NOx) may also be a factor in this regard.

Ash particles were sampled and collected from a pilot scale combustion unit and then re-suspended and diluted to concentrations of 1000 μg/m3. These particles were inhaled by mice, which were held in a nose-only exposure configuration. Exposure tests were for 1 h per day, and involved three sets (eight mice per set) of mice. These three sets were exposed over 8, 16, and 24 consecutive days, respectively. Pathological lung damage was measured in terms of increases in lung permeability.

Results show that the re-suspended coal/RDF ash appeared to cause very different effects on lung permeability than did coal ash alone. In addition, it was also shown that a “snapshot” of lung properties after a fixed number of daily 1-h exposures, can be misleading, since apparent repair mechanisms cause lung properties to change over a period of time. For the coal/RDF, the greatest lung damage (in terms of lung permeability increase) occurred at the short exposure period of 8 days, and thereafter appeared to be gradually repaired. Ash from staged (low NOx) combustion of coal/RDF appeared to cause greater lung injury than that from unstaged (high NOx) coal/RDF combustion, although the temporal behavior and (apparent) repair processes in each case were similar. In contrast to this, coal ash alone showed a slight decrease of lung permeability after 1 and 3 days, and this disappeared after 12 days. These observations are interpreted in the light of mechanisms proposed in the literature. The results all suggest that the composition of particles actually inhaled is important in determining lung injury. Particle size segregated leachability measurements showed that water soluble sulfur, zinc, and vanadium, but not iron, were present in the coal/RDF ash particles, which caused lung permeabilities to increase. However, the differences in health effects between unstaged and staged coal/RDF combustion could not be attributed to variations in pH values of the leachate.  相似文献   


13.
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

14.
Published data from nearly 2,000 coal samples comprising 250 coal beds from 17 states, representing many of the coal producing horizons in the USA, shows moderate correlation (0.7) between depth and methane content for high volatile coal ranks. Low-volatile rank coals average the highest methane content, 12.74 m3/ton (450 ft3/ton), subbituminous rank coals the lowest, <0.71 m3/ton (<25 ft3/ton). Experimentation under replicated in situ conditions of triaxial stress, pore pressure and temperature on Pittsburgh No. 8 coal indicate permeability decreases with increasing CO2 pressure, with an increase in strain in the coal associated with its swelling.  相似文献   

15.
采用碱化、醚化法制备了以废纸为原料的煤尘抑制剂,借助FTIR、SEM、TG-DTA及XRF等手段对合成物进行了表征,并将其用于抑制煤尘进行性能测试。结果表明,羧甲基纤维素的取代度为0.69;选用羧甲基纤维素含量为0.5g/mL的煤尘抑制剂进行应用实验,效果最佳。9 h内,喷洒含有羧甲基纤维素的煤尘抑制剂的煤样表面已经结壳,抗七级风,抑尘率在130 h都可保持在99%以上。在较高温燃烧条件下,煤尘抑制剂以H2O和CO2的形式失去,不会产生有害物质。  相似文献   

16.
Environmental Science and Pollution Research - The heavy metals, which derived from accumulated coal gangue, are important source of environmental pollution. In this study, coal gangue dumps,...  相似文献   

17.
我国燃煤的污染现状及治理对策   总被引:12,自引:0,他引:12  
剖析了尖前我国工业民用燃煤所造成的严重污染现象及其原因,并对燃煤的燃前,燃烧过程,以及烟气排放三个阶段的脱提出了治理对策。  相似文献   

18.
19.
Coal is one of the major energy resources in China, with nearly half of produced Chinese coal used for power and heat generation. The large use of coal for power and heat generation in China may result in significant atmospheric emissions of toxic volatile trace elements (i.e. F, As, Se, Hg, and Sb). For the purpose of estimating the atmospheric emissions from coal-fired power and heat generation in China, a simple method based on coal consumption, concentration and emission factor of trace element was adopted to calculate the gaseous emissions of elements F, As, Se, Hg, and Sb. Results indicate that about 162 161, 236, 637, 172, and 33 t F, As, Se, Hg, and Sb, respectively, were introduced into atmosphere from coal combustion by power and heat generation in China in 2009. The atmospheric emissions of F, As, Se, Hg, and Sb by power and heat generation increased from 2005 to 2009 with increasing coal consumptions.  相似文献   

20.
Particulate matter (PM) has been becoming the principal urban pollutant in many major cities in China, and even all over the world. It is reported that the coal combustion process is one of the main sources of PM in the atmosphere. Therefore, an investigation of formation and emission of fine primary PM in coal combustion was conducted. First, the sources and classification of coal-fired primary PM were discussed; then their formation pathways during the coal combustion process were analyzed in detail. Accordingly, the emission control methods for fine particles generated from coal-fired power plants were put forward, and were classified as precombustion control, in-combustion control, and postcombustion control. Precombustion control refers to the processes for improving the coal quality before combustion, such as coal type selection and coal preparation. In-combustion control means to take measures for adjusting the combustion conditions and injection of additives during the combustion process to abate the formation of PM. Postcombustion control is the way that the fine PM are aggregated into larger ones by some agglomeration approaches and subsequently are removed by dust removal devices, or some high-performance modifications of conventional particle emission control devices (PECDs) can be taken for capturing fine particles. Finally, some general management suggestions are given for reducing fine PM emission in coal-fired power plants.
ImplicationsThe analysis and discussions of coal properties and its combustion process are critical to recognizing the formation and emission of the fine primary PM in combustion. The measures of precombustion, in-combustion, and postcombustion control based on the analysis and discussions are favorable for abating the PM emission. Practically, some measures of implementation do need the support of national policies, even needing to sacrifice economy to gain environmental profit, but this is the very time to execute these, and high-performance PECDs, especially novel devices, should be used for removing fine PM in flue gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号