首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - Arsenic is ranked in the top ten environmental toxicants but its impact on type 2 diabetes mellitus (T2DM) and its association with other human health...  相似文献   

2.
The present study was conducted to systematically review, analyze, and interpret all the relevant evidence in the literature on the possible link between exposure to bisphenol A (BPA) and the risk of type-2 diabetes mellitus (T2DM). We developed a comprehensive search strategy and used it to search Web of Science, Scopus, PubMed, and Google Scholar up to March 31, 2016, producing 3108 hits, of which 13 original papers were included. Findings of these studies were quite controversial; few studies indicated a significant positive association between BPA exposure and T2DM, while some other failed to detect such a relationship. Overall, it can be suggested that chance is unlikely the plausible explanation for the observed association between BPA exposure and T2DM. This was mainly because even in the negative studies some clues could be found in favor of a statistically significant relationship between BPA and T2DM. Additionally, some of the studies had shortcomings in defining the exposure and outcome measures, which, if present, might have led to underestimating the relationship between BPA exposure and T2DM. The theoretical plausibility of such a relationship found earlier in animal studies also supports this point. However, more definitive answer requires the conduct of future longitudinal studies, in which the possible association between BPA exposure and T2DM is assessed over much longer periods of time with more temporally robust BPA measurements. In addition, it would be quite beneficial if future studies be conducted in areas where data is still lacking (e.g., South America, Australia/Oceania, and Europe).
Graphical abstract ?
  相似文献   

3.
Environmental Science and Pollution Research - To investigate the association between antibiotic exposure and risk of type 2 diabetes mellitus (T2DM). Four electronic databases, including PubMed,...  相似文献   

4.
Cyclodextrins (CDs) possess a hydrophilic external surface and a hydrophobic cavity. They are thus highly soluble and, in the meantime, effectively form inclusion complexes with hydrophobic organic compounds to enhance their solubilities. In this study, the complexation between modified beta-CDs and the herbicide diclofop-methyl (DM), (2-(4-(2,4-dichlorophenoxy)-phenoxy) propionate), was investigated. The complexation was confirmed by the shifts in the wavelengths of maximum ultra violet (UV) absorption and fluorescence excitation/emission. The deuterium isotope effects indicate that in the presence of beta-CDs the solubility of DM was lower while that of diclofop was higher in D2O than in H2O, suggesting the primary role of hydrophobic interactions in complexation. The solubility of DM was enhanced in the presence of beta-CDs, the extent of which depended on the modification of beta-CDs. The complexation reduced the hydrolysis of DM and hence increased its stability. The small inconsistency in the power of beta-CDs between hydrolysis retardation and solubilization suggests that hydrolysis was affected by the properties of beta-CDs and the configuration of DM in the complexes. Use of beta-CDs may thus result in the mobilization of soil DM. Properly modified beta-CDs may be utilized as formulation additives for improved delivery of DM and for enhanced environmental remediation.  相似文献   

5.
6.
BackgroundIn the UK air quality has been monitored systematically since 1914, providing valuable data for studies of the long-term trends in air pollution and potentially for studies of health effects of air pollutants. There are, however, challenges in interpreting these data due to changes over time in the number and location of monitored sites, and in monitoring techniques. Particulate matter was measured as deposited matter (DM) using deposit gauge monitors until the 1950s when black smoke (BS) filters were introduced. Estimating long-term exposure to particulates using data from both deposit gauge and BS monitors requires an understanding of the relationships between DM, SO2 and BS.AimsTo explore whether DM and/or SO2, along with seasonal and location specific variables can be used to predict BS levels.MethodsAir quality data were abstracted from hard copies of the monthly Atmospheric Pollution Bulletins for the period April 1956–March 1961 for any sites with co-located DM, SO2 and BS data for three or more consecutive years. The relationships between DM, SO2, and BS were assessed using mixed models.ResultsThere were 34 eligible sites giving 1521 triplets of data. There was a consistent correlation between SO2 and BS at all sites, but the association between DM and BS was less clear and varied by location. Mixed modelling allowing for repeat measurements at each site revealed that SO2, year, rainfall and season of measurement explained 72% of the variability in BS levels.ConclusionsSO2 can be used as a surrogate measure for BS in all monitoring locations. This surrogate can be improved upon by consideration of site specific characteristics, seasonal effects, rainfall and year of measurement. These findings will help in estimating historic, long-term exposure to particulates where BS or other measures are not available.  相似文献   

7.

Abstract The in vivo effects of sublethal concentrations of deltamethrin (DM), a pyrethroid insecticide, on the hepatic microsomal cytochrome P450 (Cyt P450) content and the Cyt P450‐dependent monooxygenase activities (para‐nitrophenetole‐O‐deethylase, pNPOD; aminopyrene‐N‐demethylase, APND; ethylmorphine‐N‐demethylase, EMND; 7‐ethoxycoumarin‐O‐deethylase, ECOD; and ethoxyresorufin‐O‐deethylase, EROD) were examined in adult carp (Cyprinus carpió L.).

0.2 μg/1 DM treatment resulted in significant increases in APND, EMND and ECOD activities, whereas 2 μg/1 DM resulted in significant inhibitions of all studied isoenzyme activities with the exceptions of pNPOD and APND after 72 h. EROD was the only enzyme for which a slight increase in activity was observed. On repeated treatment, Cyt P450 could not be detected after 48 h, but the Cyt P420 level increased. All tested isoenzyme activities were inhibited, with the exception ofthat of EROD, which was enhanced.

All these changes in enzyme activities and Cyt P450 content demonstrate the effects of DM on fish. DM treatment at low concentration is presumed to cause induction of the Cyt P450‐dependent monooxygenases which may lead to faster metabolization of the insecticide. In contrast, DM at higher concentration strongly inhibited the activities of the studied enzymes. This finding may be due to the damaging effect of DM on the xenobiotic metabolizing enzyme systems offish.  相似文献   

8.
Cyclodextrins (CDs) possess a hydrophilic external surface and a hydrophobic cavity. They are thus highly soluble and, in the meantime, effectively form inclusion complexes with hydrophobic organic compounds to enhance their solubilities. In this study, the complexation between modified β-CDs and the herbicide diclofop-methyl (DM), (2-(4-(2,4-dichlorophenoxy)-phenoxy) propionate), was investigated. The complexation was confirmed by the shifts in the wavelengths of maximum ultra violet (UV) absorption and fluorescence excitation/emission. The deuterium isotope effects indicate that in the presence of β-CDs the solubility of DM was lower while that of diclofop was higher in D2O than in H2O, suggesting the primary role of hydrophobic interactions in complexation. The solubility of DM was enhanced in the presence of β-CDs, the extent of which depended on the modification of β-CDs. The complexation reduced the hydrolysis of DM and hence increased its stability. The small inconsistency in the power of β-CDs between hydrolysis retardation and solubilization suggests that hydrolysis was affected by the properties of β-CDs and the configuration of DM in the complexes. Use of β-CDs may thus result in the mobilization of soil DM. Properly modified β-CDs may be utilized as formulation additives for improved delivery of DM and for enhanced environmental remediation.  相似文献   

9.
This study sought to evaluate the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)), the gas of greatest environmental concern to the poultry industry. Four plant species (Norway spruce, Spike hybrid poplar, Streamco willow, and hybrid willow) were planted on eight commercial farms from 2003 to 2004. Because temperature (T) can be a stressor for trees, T was monitored in 2005 with data loggers among the trees in front of the exhaust fans (11.4 to 17.7 m) and at a control distance away from the fans (48 m) during all four seasons in Pennsylvania. Norway spruce (Picea abies) foliage samples were taken in August 2005 from one turkey and two layer farms for dry matter (DM) and nitrogen (N) analysis. The two layer farms had both Norway spruce and Spike hybrid poplar (Populus deltoides x Populus nigra) plantings sampled as well allowing comparisons of species and the effect of plant location near the fans versus a control distance away. Proximity to the fans had a clear effect on spruce foliar N with greater concentrations downwind of the fans than at control distances (3.03 vs. 1.88%; P < or = 0.0005). Plant location was again a significant factor for foliar N of both poplar and spruce on the two farms with both species showing greater N adjacent to the fans compared to the controls (3.75 vs. 2.32%; P < or = 0.0001). Pooled foliar DM of both plants was also greater among those near the fans (56.17, fan vs. 44.67%, control; P < or = 0.005). Species differences were also significant showing the potential of poplar to retain greater foliar N than spruce (3.52 vs. 2.55%; P < or = 0.001) with less DM (46.00 vs. 54.83%; P < or = 0.05) in a vegetative buffer setting. The results indicated plants were not stressed by the T near exhaust fans with mean seasonal T (13.04 vs. 13.03 degrees C, respectively) not significantly different from controls. This suggested poultry house exhaust air among the trees near the fans would not result in dormancy stressors on the plants compared to controls away from the fans.  相似文献   

10.
This study sought to evaluate the potential of trees planted around commercial poultry farms to trap ammonia (NH3), the gas of greatest environmental concern to the poultry industry. Four plant species (Norway spruce, Spike hybrid poplar, Streamco willow, and hybrid willow) were planted on eight commercial farms from 2003 to 2004. Because temperature (T) can be a stressor for trees, T was monitored in 2005 with data loggers among the trees in front of the exhaust fans (11.4 to 17.7 m) and at a control distance away from the fans (48 m) during all four seasons in Pennsylvania. Norway spruce (Picea abies) foliage samples were taken in August 2005 from one turkey and two layer farms for dry matter (DM) and nitrogen (N) analysis. The two layer farms had both Norway spruce and Spike hybrid poplar (Populus deltoides × Populus nigra) plantings sampled as well allowing comparisons of species and the effect of plant location near the fans versus a control distance away. Proximity to the fans had a clear effect on spruce foliar N with greater concentrations downwind of the fans than at control distances (3.03 vs. 1.88%; P ≤ 0.0005). Plant location was again a significant factor for foliar N of both poplar and spruce on the two farms with both species showing greater N adjacent to the fans compared to the controls (3.75 vs. 2.32%; P ≤ 0.0001). Pooled foliar DM of both plants was also greater among those near the fans (56.17, fan vs. 44.67%, control; P ≤ 0.005). Species differences were also significant showing the potential of poplar to retain greater foliar N than spruce (3.52 vs. 2.55%; P ≤ 0.001) with less DM (46.00 vs. 54.83%; P ≤ 0.05) in a vegetative buffer setting. The results indicated plants were not stressed by the T near exhaust fans with mean seasonal T (13.04 vs. 13.03°C, respectively) not significantly different from controls. This suggested poultry house exhaust air among the trees near the fans would not result in dormancy stressors on the plants compared to controls away from the fans.  相似文献   

11.
Background, aim, and scope  As emerging contaminants, transformation products of the pollutants via various environmental processes are rather unknown, and some may predominately contribute to the environmental risks of the parent compounds. Hence, studies on transformation products complement the assessment of the environmental safety of the parent compounds. In this study, degradation experiments and toxicity tests using diclofop-methyl (DM), a widely used herbicide, and selected major transformation products were carried out in algal cultures to assess the time course of DM toxicity and its relevance in the formation of new breakdown products. Methods  The alga Chlorella vulgaris was maintained in the algal growth medium HB IV. The inhibition of algal growth was determined by measuring optical density at 680 nm (OD680). Initially, DM and two selected breakdown products were added to the algal cultures, and following degradation experiments analyses were carried out by high performance liquid chromatography. In addition, the possible relationship between DM degradation and toxicity was assessed, based on physico-chemical properties of the compounds and their toxicity. Results  DM was rapidly absorbed onto the surface of the algal cells where it was hydrolyzed to diclofop (DC). Further degradation to 4-(2, 4-dichlorophenoxy) phenol (DP) occurred in the cells. However, only a minor amount of DC was degraded to DP under the same conditions when DC was initially added to the algal culture. When C. vulgaris was exposed to these compounds for 96 h, the determined EC50 showed that DC was about ten times less toxic than DM (EC50 = 0.42 mg/L) and that DP (EC50 = 0.20 mg/L) was the most toxic. Discussion  Due to strong hydrophobicity and rare dissociation, DM has tendency toward absorption as compared to DC. The higher average degradation rates of DC initially treated by DM revealed the damage of the cell membranes caused by the DM and, thus, enhanced movement of DC into the cells. Following occurrence of phenolic breakdown products, DP suggested that DC should be intracellularly degraded to DP, which had a more potent mode of action and a higher acute toxicity. Moreover, the results for EC50 at various intervals were in accordance with degradation processes of the initial compounds, in which rapid formation of DP was attributed to an increasing toxicity of DM. Conclusions  The toxicity of DM in algal suspensions increased with time due to its degradation to DP, which contributed significantly to the determined toxicity. These results indicate that the toxicity of the pesticide probably depends significantly on degradation. It is thus important to consider the time-dependent environmental processes when evaluating the toxicological effects of pesticides for proper risk assessment. Recommendations and perspectives  Increasing transformation products of these contaminants are identified in the environment, although they seem to be unknown in terms of the lacking studies on environmental behavior and ecotoxicity concerning them. Certain breakdown products probably greatly contribute to the apparent toxicity of the parent compounds, which is ascribed to the parent compounds in general studies ignoring the dependence of their toxicity on various transformation pathways. These studies that identify new intermediates and assess their toxicity via the environmental processes will be helpful to distinguish the nature of toxicity of the parent contaminants.  相似文献   

12.
头孢噻肟钠生产废渣的综合利用   总被引:3,自引:0,他引:3  
从头孢噻肟钠生产废渣中回收2-硫醇基苯并噻唑合成二硫化二苯并噻唑,DM的收率达23.8%,产品质量达到HGB2-158-61标准,小试表明,方法可行,操作稳定,简便,既减轻了废渣生成的污染,又回收和用途广泛的化工原料,有一定的环境效益和经济效益。  相似文献   

13.
We have previously demonstrated that dark materials (DM) in acidified molasses are effectively adsorbed to Amberlite XAD7HP resin and are eluted from the resin with 0.1 M sodium hydroxide. In this paper, we have characterized the self-assembly behavior of molasses DM by using dynamic and static light scattering in combination with isoelectric focusing and infrared absorption spectroscopy in order to better understand the resin adsorption mechanism. One of DM derivatives, X-G2, contained carboxyl and hydroxyl groups and had a weight-average molar mass of 9.39?×?103 to 4.42?×?104 at pH 2.1–11.5. The aggregates retained their spherical shape over the full pH range and the large gyration radius (66.4–80.0 nm) indicated that the inner structure was loosely packed. Furthermore, X-G2 had an isoelectric point of 1.8, and its density increased sharply at pH 5.9 and then approached a nearly constant value under alkaline conditions. In summary, the self-assembly processes of DM are controlled by intermolecular hydrogen-bonding and hydrophobic interactions. The aggregates adsorb to the resin through hydrophobic interactions and are eluted when excess carboxylate anions are generated.  相似文献   

14.
The soluble carbohydrate concentration of ruminal fluid, as affected by dietary forage content (DFC) and/or ruminally undegradable intake protein content (UIPC), was determined. Four ruminally cannulated steers, in a 4 × 4 Latin square design, were offered diets containing high (75 % of DM) or low (25 % of DM) DFC and high (6 % of DM) or low (5 % of DM) UIPC, in a 2 × 2 factorial arrangement. Zinc-treated SBM was the primary UIP source. Soluble hexose concentration (145.1 μM) in ruminal fluid (RF) of steers fed low DFC diets exhibited a higher trend (P = 0.08) than that (124.5 μM) of steers fed high DFC diets. UIPC did not modulate (P = 0.54) ruminal soluble hexose concentrations. Regardless of diet, soluble hexose concentration declined immediately after feeding and did not rise until 3 h after feeding (P < 0.0001). Cellobiose (≈90 %) and glucose (≈10 %) were the major soluble hexoses present in RF. Maltose was not detected. Soluble glucose concentration (13.0 μM) was not modified by either UIPC (P = 0.40) nor DFC (P = 0.61). However, a DFC by post-prandial time interaction was detected (P = 0.02). Pentose concentrations were greater (P = 0.02) in RF of steers fed high DFC (100.2 μM) than steers fed low DFC (177.0 μM). UIPC did not influence (P = 0.35) soluble pentose concentration. The identity of soluble pentoses in ruminal fluid could not be determined. However, unsubstituted xylose and arabinose were excluded. These data indicate that: (i) soluble carbohydrate concentrations remain in ruminal fluid during digestion and fermentation; (ii) slight diurnal changes began after feeding; (iii) DFC influences the soluble carbohydrate concentration in RF; and (iv) UIPC of these diets does not affect the soluble carbohydrate concentration of RF.  相似文献   

15.
This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH(3) concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH(3) passive dosi-tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH(3) concentration h(- 1) was reduced by distance from housing fans (P < or = 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P < or = 0.0005) and hybrid willow (3.41 vs. 3.02%; P < or = 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P < or = 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P < or = 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM(2.5)(0.0054, 0.0054, 0.0005, and 0.0016 mg cm(- 2); P < or = 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm(- 2), respectively; P < or = 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM(10) (0.0248 vs. 0.0036 mg cm(- 2); P < or = 0.0001) and PM(> 10) (0.0033 vs. 0.0003 mg cm(- 2); P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH(3)-N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.  相似文献   

16.

Purpose

Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions.

Methods

Biochar was produced from dairy manure (DM) at two temperatures: 200°C and 350°C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0–5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.

Results

The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g?1, respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g?1, respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO 4 3? or CO 3 2? originating in biochar, with less to the surface complexation through –OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80–100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic –OH complexation. Among the precipitation, 20–30 % of the precipitation occurred as metal phosphate and 70–80 % as metal carbonate. For DM350, 75–100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic –OH site or delocalized π electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.

Conclusions

Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.  相似文献   

17.
The sex related difference in the urinary excretion of pentachlorothiophenol (PCThP) was investigated in rats after a single oral dose of hexachlorobenzene (HCB) and compared to that obtained after a single oral dose of pentachloronitrobenzene (PCNB). A ten fold difference was obtained in both cases in favour of females. The effect of phenobarbital (PB) and β-naphtoflavone (β–NF) and the effect of diethylmaleate (DM) on the urinary pattern of HCB metabolites was investigated in male and female rats. PB enhanced the urinary excretion of pentachlorophenol (PCP) and tetrachlorohydroquinone (TCHQ) but had no effect on the excretion of PCThP. β-NF did not have any effect on any of the three main metabolites while an hepatic glutathione depletion induced by DM significantly reduced the excretion of PCThP in females. The results suggest that, after HCB or PCNB intake, a common sex dependent biotransformation step leads to the formation of PCThP, after conjugation with glutathione, independently of the pathway leading to the formation of PCP which is under the control of a PB inducible form of cytochrome P-450.  相似文献   

18.
Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70–80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40–50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.  相似文献   

19.
This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH3) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH3 concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH3 passive dosi–tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH3 concentration h? 1 was reduced by distance from housing fans (P ≤ 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P ≤ 0.0005) and hybrid willow (3.41 vs. 3.02%; P ≤ 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P ≤ 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P ≤ 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM2.5(0.0054, 0.0054, 0.0005, and 0.0016 mg cm? 2; P ≤ 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm? 2, respectively; P ≤ 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM10 (0.0248 vs. 0.0036 mg cm? 2; P ≤ 0.0001) and PM> 10 (0.0033 vs. 0.0003 mg cm? 2; P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH3–N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.  相似文献   

20.

Buchpr?sentationen

Stoffhaushalt von Auen?kosystemen: B?den und Hydrologie, Schadstoffe, BewertungenHrsg: K. Friese, B. Witter, G. Miehlich, M. Rode Verlag: Springer Verlag, Heidelberg, 2000, 434 S., 196 Abb., 79 Tabellen, ISBN 3-540-67068-8, DM 169,-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号