首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Wei YL  Lee YC  Yang YW  Lee JF 《Chemosphere》2004,57(9):1201-1205
Humic substance in compost contains various organic functional groups that can sorb metal ions through ionic force. This study used thermal treatment technology to concentrate copper in the heated residues while destroying the humic substance of copper-sorbed kitchen compost. Scanning electron microscopy (SEM) results show that copper clusters were formed in the heated residues. Information from both X-ray diffraction (XRD) patterns and Cu K-edge X-ray absorption spectroscopy (XAS) spectrum indicates that about 30% of the doped Cu(II) was chemically reduced to Cu(I) and Cu(0) when the sample was heated at 500 and 900 degrees C for 2h. The XAS results indicate that after 500 degrees C thermal treatment, the loaded Cu(NO(3))(2) was transformed into CuO (ca. 54%), Cu (ca. 18%), Cu(OH)(2) (ca. 15%), and Cu(2)O (ca.13%). Heating at 900 degrees C caused more transformation into elemental Cu probably due to more release of oxygen.  相似文献   

2.
Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).  相似文献   

3.
The effect of humic acid (HA) on Cu uptake by a bacterium and two bacterivorus ciliates was investigated. The presence of HA resulted in a statistically significant (p<0.001) decrease in Cu associated with bacteria that were exposed to 67 microg Cu L(-1). Complexation of Cu appears to lower the availability of Cu with respect to bacterial cell surface binding and uptake. For ciliates, 10 mg HA L(-1) significantly reduced uptake of Cu by Uronema, but did not reduce uptake of Cu by Pleuronema. Uronema exposed to 67 microg Cu L(-1) accumulated 54% less Cu when 10 mg HA L(-1) was present (0.50 pg ciliate(-1) vs 0.23 pg ciliate(-1)). Uronema feeding on V. natriegens, took up less than half as much Cu as unfed Uronema when exposed to Cu without HA (0.41 pg Cu fed ciliate(-1) vs 0.86 pg Cu unfed ciliate(-1), but only 40% less when exposed to Cu and HA (0.31 pg Cu fed ciliate(-1) vs 0.51 pg Cu unfed ciliate(-1)). The lower % reduction attributable to fed ciliates in the presence of HA suggests that some of the Cu associated with HA is available through trophic processes.  相似文献   

4.
Ma LM  Ding ZG  Gao TY  Zhou RF  Xu WY  Liu J 《Chemosphere》2004,55(9):1207-1212
Using a Fe/Cu bimetallic system (Fe/Cu system), the discoloration of both methylene blue in aqueous solution and the colored wastewater from a plant was investigated under the anaerobic condition in batch or continuous reactors. Results show that the Fe/Cu system effectively removed the color with over 88% of color removal efficiency for both methylene blue solution and the wastewater from the plant in batch test. Color removal efficiencies increased rapidly with Fe/Cu dosage and reaction time, respectively, at initial time and slowly to stable values. Optimum pH was neutral range. In addition, in continuous test it also removed the color of the wastewater from the plant with 63% of discoloring efficiency under the condition of 2 h of hydraulic retention time and neutral range of pH (7.0-8.3). High discoloring efficiencies with low chemical oxygen demand removal efficiencies were found in all experiments. The reduction of chromophores in pollutants was the main mechanism of the discoloration in the Fe/Cu system.  相似文献   

5.
Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.  相似文献   

6.
The copper (Cu) resistance of 1-year-old seedlings of heather (Calluna vulgaris) was tested in a greenhouse experiment. The plant material originated from seeds collected from three peatland sites located 1.2 km to the NW, and 2.5 and 5.5 km to the NE of the Harjavalta Cu-nickel (Ni) smelter, SW Finland. The plants were watered with a nutrient solution containing five different levels of Cu (1, 10, 22, 46 and 100 mg l(-1)). Cu clearly decreased the length growth of shoots, shoot and root biomass of C. vulgaris. More than 50% of the seedlings exposed to the highest Cu treatment died. C. vulgaris accumulated high amounts of Cu, the living old roots containing a maximum of 2200 mg kg(-1) Cu and the living stems 1300 mg kg(-1) Cu. Discolouring leaves contained higher Cu concentrations than green leaves. The results indicate Cu accumulation in roots and root-to-shoot transport. Some differences were found between the responses of the three seed provenances, but none of the populations proved to be more resistant to Cu than the others in all the measured responses.  相似文献   

7.
采用逐步多元回归和主成分分析的方法研究了德兴铜矿周边土壤中重金属和土壤酶活性的关系.结果表明:德兴铜矿周边各功能区均受到不同程度的Cu、Cd污染,Pb、Zn未超过《土壤环境质量标准》(GB 15618--1995)二级标准;各功能区土壤酶活性有显著差别,逐步回归分析表明土壤酶活性与Cu、Zn全量、生物可利用态Cu含量有显著线性关系,而与Cd、Pb无明显相关;土壤酶活性和生物可利用态Cu呈负线性关系,而与残渣态Cu有正线性关系.主成分分析显示,土壤酶信息系统的第1、第2主成分可反映酶活性总变异的96.27%,根据第1主成分对功能区酶活性的分类结果与土壤生物可利用态Cu含量的分类结果基本一致,提示土壤酶活性指标可以反映土壤生物可利用态Cu含量.  相似文献   

8.
Liu R  Zhao D 《Chemosphere》2007,68(10):1867-1876
This study tested the feasibility of using a new class of iron phosphate (vivianite) nanoparticles synthesized using sodium carboxymethyl cellulose (NaCMC) as a stabilizer for in situ immobilization of Cu(II) in soils. Transmission electron microscopy measurements demonstrated that the particle size was about 8.4+/-2.9 nm. Batch tests showed that nano-sized vivianite particles can effectively reduce the leachability and in vitro bioaccessibility of Cu(II) in three representative soils (calcareous, neutral, and acidic) at the low doses of 0.61 and 3.01 mg PO(4) g(-1) soil. The Cu leachability was evaluated by the toxicity characteristic leaching procedure and in vitro bioaccessibility was evaluated by the physiological based extraction test. In the case of soil amendment with nanoparticles in 3.01 mg PO(4) g(-1) soil, Cu leachability reduced 63-87% and Cu concentrations in TCLP extract decreased from 1.74-13.33 mg l(-1) to 0.23-2.55 mg l(-1) after those soils were amended for 56 d. Meanwhile, the bioaccessibility of Cu was reduced by 54-69%. Sequential extraction procedures showed the significant decrease of water soluble/exchangeable Cu(II) and carbonate bound fractions and concomitant increase of Cu residual fraction after the soils were amended with the nanoparticles, suggesting that the formation of copper phosphate minerals through precipitation and adsorption was probably responsible for the decrease of Cu availability in soils. Visual MINTEQ modeling further revealed that Cu(3)(PO(4))(2) and Cu(5)(PO(4))(3)OH were formed in the vivianite-solid Cu(II) system, resulting in the decreased solubility of the Cu(II) in the acidic pH range.  相似文献   

9.
Xue PY  Li GX  Liu WJ  Yan CZ 《Chemosphere》2010,81(9):1098-1103
A comprehensive understanding of the uptake, tolerance and transport of heavy metals in the wetland system through aquatic plants will be essential for the development of phytoremediation technologies. Copper accumulation and translocation of a submersed macrophyte Hydrilla verticillata (L.f.) Royle were investigated. Plant shoots showed a significant accumulation of Cu with a maximum of 30830 mg Cu kg?1 dry weight after exposed to 4000 μg L?1 Cu for 4d. Both roots and shoots can directly take up Cu from solution and Cu mainly accumulated in cell wall fractions. Moreover, H. verticillata predominantly accumulated Cu through shoots from the aqueous solutions because of the higher weights and bioaccumulation factors of shoots than those of roots. Acropetal translocation of Cu in the plant is higher than the basipetal translocation, which implies that upward translocation of Cu is mainly via the xylem and downward translocation is mainly through the phloem. These findings contribute to the application of submerged aquatic plants to copper removal from moderately contaminated waters.  相似文献   

10.
Earthworms (Dendrobaena veneta) were exposed to heavy metal contaminated soil from a field site under both laboratory and field conditions. In the laboratory study, D. veneta were analysed for Cu after 2 weeks' exposure. The tissue Cu concentration (Cu(W)) increased proportionally with the total extractable soil Cu content (Cu(T)) in soils that contained less than 150 mg Cu kg(-1). In D. veneta exposed to soils containing more than Cu(T) = 150 mg kg(-1), however, we observed no further increase in Cu(W). In a 64-m(2) field plot at a contaminated site, 81 soil samples were taken and analysed for Cu, Pb, Zn and pH. In June 1994, 1000 D. veneta were homogeneously distributed in the plot and sampled after 1, 2 and 5 weeks to analyse for Cu. Additionally, 2000 D. veneta were introduced in September 1994 and sampled after 1, 2 and 4 weeks. At locations where earthworms were removed, the soil Cu content was estimated by disjunctive kriging. Cu concentration factors (ratio of Cu(W) to Cu(T)) in the field experiment were in excellent agreement with those of the laboratory experiment. This indicates that, with a sufficiently high sampling density, it may be feasible to predict earthworm Cu accumulation in the field using a concentration factor determined in the laboratory.  相似文献   

11.
Luo YM  Yan WD  Christie P 《Chemosphere》2001,42(2):179-184
A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.  相似文献   

12.
含重金属铜离子与氰离子(CN)的络合物广泛存在于电镀、冶金等工业废水中,是一种较难处理的污染物。富含活性氯和Al13聚合体的水处理药剂(PACC)兼具氧化和絮凝效能,在处理含重金属氰络合物([Cu(CN)3]2-)废水方面具有良好的应用前景。研究PACC与[Cu(CN)3]2-的反应计量学、动力学,考察了pH、反应时间和投药量等影响因素,确定PACC的最佳工作参数。结果表明,PACC可同时实现对CN的氧化和对Cu2+的絮凝,有效去除水中[cu(CN)3]2-使用PACC对[Cu(CN)3]2-的无害化处置过程分为2个阶段:CN-首先被氧化成氰酸根(OCN);然后OCN-被进一步氧化并生成碳酸氢根和氮气,同时所释放的游离态铜离子被絮凝去除。这2个阶段反应的最佳pH分别为11和8,去除1tool[Cu(CN)3]2-的最佳投药量为9.35molCl2的PACC;在此条件下反应43min后,其出水中CN-和Cu2+的浓度均达到排放标准(GB21900—2008)要求。  相似文献   

13.
Agricultural soils may contain toxic levels of copper (Cu) due to sewage sludge spreading or industrial pollution but chemical analyses may not be representative of Cu bioavailability, defined as the soil Cu fraction that plants can actually absorb (i.e. Cu fraction which is not strongly adsorbed to soil components). Lipid peroxidation caused by Cu in plants was investigated as a relevant bioassay of toxicity. Seven-day-old rapeseed plantlets were grown on Cu-supplemented medium in controlled conditions. Lipid-peroxidation was assessed by measuring: (1) the 2-thiobarbituric acid (TBA)-reactive substances; (2) the hydroperoxy acids by HPLC analysis; and (3) the alkane outputs by gas chromatography. We first verified the correlation between the results obtained by each method and then discussed their advantages and disadvantages within the context of a bioassay, showing that the volatile alkane output measurement is the most precise and easy to perform method for this purpose.  相似文献   

14.
Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg(-1) rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L(-1) Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg(-1) soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg(-1) manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg(-1)), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.  相似文献   

15.
The effects of high inputs of phosphate fertiliser on Cd concentrations were studied in soil solutions extracted from topsoils. Soils were sampled along a transect at distances of 1-100 m away from a fertiliser bin. The transect was sampled four times during 1 year. Soil solutions were analysed for Cd, pH, major cations and anions, and other heavy metals (As, Cr, Cu, Pb). For one of the transect samplings, soil total Cd, Cr, Cu, Pb and P were also measured. Cd speciation in the soil solutions was calculated by the GEO-CHEM-PC computer program. Chemical composition varied substantially along the transect, and also between samplings, indicative of seasonal effects and the influence of a fresh application of superphosphate fertiliser during the year. Application of fertiliser decreased soil solution pH and increased the levels of heavy metals in soil solution. Generally, soil total Cd, Cr, Cu, Pb, and P decreased with increasing distance from the fertiliser bin. Correlations between P and the four heavy metals were: P and Cd (R2 = 0.978), P and Cr (R2 = 0.712), P and Pb (R2 = 0.538), P and Cu (R2 = 0.267). Less than 1% of the total Cd in the soil samples was found in the soil solution. The free metal ion Cd2+ accounted for 55-90% of solution Cd. Of the complexed species of Cd, the chloride and sulphate complexes were usually the most important, even when nitrate and phosphate concentrations were relatively high. The presence of As, Cr, Cu and Pb had no effect on Cd speciation.  相似文献   

16.
Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 microM of Cu. Although no differences between isolates were detected, mean values for the 20 microM Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils.  相似文献   

17.
Electrokinetics is an innovative technique for treating heavy metals contaminated soil, especially low pH soils such as the Chinese red soil (Udic Ferrisols). In this paper, a Cu-Zn contaminated red soil is treated by electrokinetics. When the Cu-Zn contaminated red soil was treated without control of catholyte pH during the electrokinetic treatment, the soil pH in the soil sections near cathode after the experiment was high above 6, which resulted in accumulation of large amounts of Cu and Zn in the soil sections with such high pH values. Compared to soil Cu, soil Zn was more efficiently removed from the soil by a controlled electrokinetic method. Application of lactic acid as catholyte pH conditioning solution caused an efficient removal of Cu and Zn from the soil. Increasing the electrolyte strength (salt concentration) of the conditioning solution further increased Cu removal, but did not cause a significant improvement for soil Zn. Soil Cu and Zn fractions after the electrokinetic treatments were analyzed using sequential extraction method, which indicated that Cu and Zn precipitation in the soil section closest to the cathode in the treatments without catholyte pH control limited their removal from the soil column. When the catholyte pH was controlled by lactic acid and CaCl(2), the soil Cu and Zn removal percentage after 554 h running reached 63% and 65%, respectively. Moreover, both the residual soil Cu and Zn concentrations were lower than 100 mg kg(-1), which is adequate and meets the requirement of the Chinese soil environmental quality standards.  相似文献   

18.

Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg?1 rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L?1 Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg?1 soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg?1 manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg?1), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.  相似文献   

19.
Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.  相似文献   

20.
Sewage effluent from a large ocean outfall south of Sydney, southeastern Australia, is efficiently dispersed on this high energy continental margin. An enrichment of Ag, Cu, Pb and Zn is only detectable in the fine fraction (<62.5 microm) of sediment. Ag, Co, Cu, Ni, Pb and Zn in the bulk sample correlate strongly with the mud content of surficial sediment, making an identification of the anthropogenic trace metal source difficult using total sediment analyses. The concentrations of HCB and DDE in the total sediment are also slightly elevated near the outfall. In the vicinity of the outfall, the estimated sewage component in the fine fraction of sediment, using Ag, Cu and Zn in a conservative, two-endmember physical mixing model, is <5% and is <0.25% of the total sediment. A greater anthropogenic Pb component in the fine fraction (mean: 24.8%) of surficial sediment compared to Ag, Cu and Zn may suggest a source other than sewage to Sydney continental margin sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号