首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feasibility study of ultraviolet activated persulfate oxidation of phenol   总被引:8,自引:0,他引:8  
Lin YT  Liang C  Chen JH 《Chemosphere》2011,82(8):1168-1172
  相似文献   

2.
以污水处理厂浓缩池污泥为研究对象,用污泥比阻、污泥含水率和污泥粘度评价污泥脱水性能,研究亚铁离子活化过硫酸盐氧化法对污泥脱水性能的影响。结果表明,单独投加过硫酸钾时,污泥比阻和含水率随过硫酸钾投加量的增加稍有下降。投加硫酸亚铁和过硫酸钾时,温度对污泥脱水性能影响不大。污泥脱水性能最佳的条件:在常温下,污泥p H为7,硫酸亚铁投加量为1.5 mmol/g VSS、过硫酸钾投加量为1.2 mmol/g VSS,亚铁离子和过硫酸根的摩尔比为1.25∶1,污泥的比阻从5.36×1012m/kg降低到1.9×1011m/kg,含水率从97.0%降低到81.6%,粘度从178 m Pa·s降低到102 m Pa·s。  相似文献   

3.
A rapid spectrophotometric determination of persulfate anion in ISCO   总被引:10,自引:0,他引:10  
Due to a gradual increase in the use of persulfate as an in situ chemical oxidation (ISCO) oxidant, a simple measurement of persulfate concentration is desirable to analyze persulfate distribution at designated time intervals on/off a site. Such a distribution helps evaluate efficacy of ISCO treatment at a site. This work proposes a spectrophotometric determination of persulfate based on modification of the iodometric titration method. The analysis of absorption spectra of a yellow color solution resulting from the reaction of persulfate and iodide in the presence of sodium bicarbonate reveals an absorbance at 352 nm, without significant interferences from the reagent matrix. The calibration graph was linear in the range of persulfate solution concentration of 0-70 mM at 352 nm. The proposed method is validated by the iodometric titration method. The solution pH was at near neutral and the presence of iron activator does not interfere with the absorption measurement. Also, analysis of persulfate in a groundwater sample using the proposed method indicates a good agreement with measurements by the titration method. This proposed spectrophotometric quantification of persulfate provides a simple and rapid method for evaluation of ISCO effectiveness at a remediation site.  相似文献   

4.
5.
以地水中的氯代烃污染物三氯乙烯(TCE)为目标污染物,以过硫酸钾溶液为氧化剂,探讨了不同条件下过硫酸钾对TCE的去除效果。实验结果表明,在40℃,过硫酸钾初始浓度为2.43 g/L条件下,反应2 h后,TCE的去除率就可达到96.8%;过硫酸钾对TCE的去除符合一级反应动力学方程,速率常数(K)为1.3364 h-1,半衰期(t1/2)为0.51 h;过硫酸钾对TCE的去除速率在pH为中性附近时最大,其后无论pH升高或降低去除速率均减小;受温度和pH影响较明显,并且反应温度越高,受pH的影响越明显;随离子强度的增加而减小;反应活化能为119.6 kJ/mol;过硫酸钾溶于水生成过硫酸根离子(S2O28-),S2O28-会进一步生成硫酸根自由基(SO4-.),在碱性条件下,SO4-.与OH-反应会进一步生成羟基自由基(.OH)。过硫酸钾对于TCE的去除主要源自SO4-.和.OH的强氧化性。  相似文献   

6.
Huang KC  Zhao Z  Hoag GE  Dahmani A  Block PA 《Chemosphere》2005,61(4):551-560
This study investigated the extent and treatability of the degradation of 59 volatile organic compounds (VOCs) listed in the EPA SW-846 Method 8260B with thermally activated persulfate oxidation. Data on the degradation of the 59 VOCs (in mixture) reacted with sodium persulfate in concentrations of 1 g l(-1) and 5 g l(-1) and at temperatures of 20 degrees C, 30 degrees C, and 40 degrees C were obtained. The results indicate that persulfate oxidation mechanisms are effective in degrading many VOCs including chlorinated ethenes (CEs), BTEXs and trichloroethanes that are frequently detected in the subsurface at contaminated sites. Most of the targeted VOCs were rapidly degraded under the experimental conditions while some showed persistence to the persulfate oxidation. Compounds with "CC" bonds or with benzene rings bonded to reactive functional groups were readily degraded. Saturated hydrocarbons and halogenated alkanes were much more stable and difficult to degrade. For those highly persulfate-degradable VOCs, degradation was well fitted with a pseudo first-order decay model. Activation energies of reactions of CEs and BTEXs with persulfate were determined. The degradation rates increased with increasing reaction temperature and oxidant concentration. Nevertheless, to achieve complete degradation of persulfate-degradable compounds, the systems required sufficient amounts of persulfate to sustain the degradation reaction.  相似文献   

7.
过硫酸盐原位化学氧化在治理地下水有机污染方面得到了广泛应用,但有关过硫酸盐氧化含乙醇土壤和地下水的研究报告较少。为了评价过硫酸盐氧化乙醇进行地下水修复的可行性,在不加入活化剂的情况下,开展了过硫酸盐氧化去除地下水中乙醇的批实验,主要考察了过硫酸盐投加方式和水温对去除效果的影响。结果表明:过硫酸盐能有效氧化去除地下水中的乙醇,增大过硫酸盐初始浓度可以促进乙醇的去除;过硫酸盐氧化乙醇的过程遵循准一级反应动力学方程,其速率常数为0.344 7d~(-1);分批投加过硫酸盐时应及时续投,避免SO_4~-·不足致使乙醇的去除速率降低;水温能影响过硫酸盐的分解速率,是影响乙醇去除效果的一个重要环境因素;过硫酸盐氧化乙醇会导致水体pH下降和氧化还原电位(ORP)升高。  相似文献   

8.
过硫酸钾脱除气态元素汞的试验研究   总被引:2,自引:0,他引:2  
在鼓泡塔反应器中,用过硫酸钾(K2S2O8)脱除气态元素汞.试验考察了K2S2O8浓度、吸收温度及催化剂等因素对脱汞效率的影响.结果表明:当K2S2O8在1.0~10.0 mmol/L时,随着浓度的增加,脱汞效率显著升高;AgNO3对K2S2O8脱汞具有显著的催化作用,且0.3 mmol/L AgNO3的催化效果优于0.1 mmol/L AgNO3;CuSO4对K2S2O8除汞也具有催化作用,但催化效果不如AgNO3;AgNO3存在下,低温更有利于汞的脱除.  相似文献   

9.
The development of slow-release chemical oxidants for sub-surface remediation is a relatively new technology. Our objective was to develop slow-release persulfate-paraffin candles to treat BTEX-contaminated groundwater. Laboratory-scale candles were prepared by heating and mixing Na2S2O8 with paraffin in a 2.25 to 1 ratio (w/w), and then pouring the heated mixture into circular molds that were 2.38 cm long and either 0.71 or 1.27 cm in diameter. Activator candles were prepared with FeSO4 or zerovalent iron (ZVI) and wax. By treating benzoic acid and BTEX compounds with slow-release persulfate and ZVI candles, we observed rapid transformation of all contaminants. By using 14C-labeled benzoic acid and benzene, we also confirmed mineralization (conversion to CO2) upon exposure to the candles. As the candles aged and were repeatedly exposed to fresh solutions, contaminant transformation rates slowed and removal rates became more linear (zero-order); this change in transformation kinetics mimicked the observed dissolution rates of the candles. By stacking persulfate and ZVI candles on top of each other in a saturated sand tank (14 × 14 × 2.5 cm) and spatially sampling around the candles with time, the dissolution patterns of the candles and zone of influence were determined. Results showed that as the candles dissolved and persulfate and iron diffused out into the sand matrix, benzoic acid or benzene concentrations (Co = 1 mM) decreased by >90% within 7 d. These results support the use of slow-release persulfate and ZVI candles as a means of treating BTEX compounds in contaminated groundwater.  相似文献   

10.
Influence of pH on persulfate oxidation of TCE at ambient temperatures   总被引:10,自引:0,他引:10  
Liang C  Wang ZS  Bruell CJ 《Chemosphere》2007,66(1):106-113
In situ chemical oxidation (ISCO) is a technology used for groundwater remediation. This laboratory study investigated the use of the oxidant sodium persulfate for the chemical oxidation of trichloroethylene (TCE) at near ambient temperatures (10, 20 and 30 degrees C) to determine the influence of pH (pH=4, 7 and 9) on the reaction rate (i.e., pseudo-first-order rate constants) over the range of temperatures utilized. TCE solutions (60 mg l(-1); 0.46 mM) were prepared in phosphate buffered RO water and a fixed persulfate/TCE molar ratio of 50/1 was employed in all tests. Half-lives of TCE degradation at 10, 20 and 30 degrees C (pH 7) were 115.5, 35.0 and 5.5h, respectively. Maximum TCE degradation occurred at pH 7. Lowering system pH resulted in a greater decrease in TCE degradation rates than increasing system pH. Radical scavenging tests used to identify predominant radical species suggested that the sulfate radical (SO(4)(.-)) predominates under acidic conditions and the hydroxyl radical (.OH) predominates under basic conditions. In a side by side comparison of TCE degradation in a groundwater vs. unbuffered RO water it was demonstrated that when the system pH is buffered to near neutral pH conditions due to the presence of natural occurring groundwater constituents that the TCE degradation rate is higher than in unbuffered RO water where the system pH dropped from 5.9 to 2.8. The results of this study suggest that in a field application of ISCO, pH should be monitored and adjusted to near neutral if necessary.  相似文献   

11.
Bennedsen LR  Muff J  Søgaard EG 《Chemosphere》2012,86(11):1092-1097
  相似文献   

12.
为预测评估过硫酸盐缓释材料的释放性能,对释放过程模型的构建以及模型的验证进行了研究。借助微积分思想,从材料体的概化分割、初始条件设定、每个小单元的状态标定、各个小单元中过硫酸钾的迁移变化量以及材料最外层释放过硫酸盐的量5个方面构建过硫酸盐缓释材料释放模型,利用Excel-VBA编程实现其释放过程模拟。采用欧盟标准NEN7375测试过硫酸盐缓释材料释放性能并获得模型参数。通过输入相关模型参数得到过硫酸盐动态迁移过程及其释放特征曲线,并利用实测数据与模拟数据进行拟合校验。结果表明,模型模拟值与实测值拟合较好,平均误差为1.88%,表明该模型设计合理,能够准确模拟过硫酸盐缓释材料释放过程,可作为缓释材料优化设计工具。  相似文献   

13.
为了深度处理印染废水生化出水,使其达到工业回用要求,利用微波活化过硫酸钾产生具有强氧化性的硫酸根自由基·SO-4,降解印染废水生化出水中的有机污染物。考察了硫酸亚铁的投加量,过硫酸钾的浓度及pH的影响,并通过对比实验讨论了微波活化作用效果。结果表明,过硫酸钾微波组合能够有效地去除生化出水中的TOC和色度。对于某印染废水生化出水,处理效果在pH=10时最好,当过硫酸钾浓度为14 g/L时,TOC去除率达57.60%,脱色率为98.28%。研究结果表明,过硫酸钾微波组合对于印染废水的深度处理效果良好,有较好的应用前景。  相似文献   

14.
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater.  相似文献   

15.
四溴双酚A(TBBP-A)生产废水含有多种难降解有机物及大量盐类,是极难处理的化工废水。采用外加直流电压活化过硫酸钠的方法预处理TBBP-A生产废水,以总有机碳(TOC)降解率为指标考察有机物的降解情况。结果表明,酸性条件有利于电活化过硫酸钠降解TBBP-A生产废水,pH=2时过硫酸钠浓度对TOC降解情况影响不大,中性或碱性环境下,过硫酸钠浓度是TOC降解率的主要影响因素。适当提升外加电压有利于促进TBBP-A生产废水中TOC的降解,处理时间宜控制在1.0h以内,电极介质对于TOC降解的影响总体不大。当外加电压为3.0V,过硫酸钠质量分数为2%~5%,pH=2,反应时间为1.0h左右时,TOC降解率可以达到40%以上,可见电活化过硫酸钠技术可以作为预处理TBBP-A生产废水的有效手段。  相似文献   

16.
新型过硫酸盐活化技术降解有机污染物的研究进展   总被引:1,自引:0,他引:1  
在利用过硫酸盐氧化降解有机污染物过程中,以过硫酸盐活化所产生强氧化性的硫酸根自由基至为关键,综述了近来过硫酸盐的新型活化技术,其中以零价金属材料,含铁矿石,含铁复合材料,活性炭及含碳复合材料,含醌结构有机物活化为主线展开。通过介绍各种活化机理以及相应活化技术在降解有机污染物的研究,继而提高过硫酸盐降解有机污染物的潜在研究与应用价值。  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds with carcinogenic and/or mutagenic potential. To address the limitations of individual remediation techniques and to achieve better PAH removal efficiencies, the combination of chemical and biological treatments can be used. The degradation of phenanthrene (chosen as a model of PAH) by persulfate in freshly contaminated soil microcosms was studied to assess its impact on the biodegradation process and on soil properties. Soil microcosms contaminated with 140 mg/kgDRY SOIL of phenanthrene were treated with different persulfate (PS) concentrations 0.86–41.7 g/kgDRY SOIL and incubated for 28 days. Analyses of phenanthrene and persulfate concentrations and soil pH were performed. Cultivable heterotrophic bacterial count was carried out after 28 days of treatment. Genetic diversity analysis of the soil microcosm bacterial community was performed by PCR amplification of bacterial 16S rDNA fragments followed by denaturing gradient gel electrophoresis (DGGE). The addition of PS in low concentrations could be an interesting biostimulatory strategy that managed to shorten the lag phase of the phenanthrene biological elimination, without negative effects on the physicochemical and biological soil properties, improving the remediation treatment.  相似文献   

18.
Usman M  Faure P  Ruby C  Hanna K 《Chemosphere》2012,87(3):234-240
In this study, feasibility of magnetite-activated persulfate oxidation (AP) was evaluated for the degradation of polycyclic aromatic hydrocarbons (PAHs) in batch slurry system. Persulfate oxidation activated with soluble Fe(II) (FP) or without activation (SP) was also tested. Kinetic oxidation of PAHs was tracked in spiked sand and in aged PAH contaminated soils at circumneutral pH. Quartz sand was spiked with: (i) single model pollutant (fluorenone) and (ii) organic extract isolated from two PAH contaminated soils (H and NM sampled from ancient coking plants) and was subjected to oxidation. Oxidation was also performed on real H and NM soils with and without an extraction pretreatment. Results indicate that oxidation of fluorenone resulted in its complete degradation by AP while abatement was very low (<20%) by SP or FP. In soil extracts spiked on sand, significant degradation of 16 PAHs was observed by AP (70-80%) in 1 week as compared to only 15% by SP or FP systems. But no PAH abatement was observed in real soils whatever the treatment used (AP, FP or SP). Then soils were subjected to an extraction pretreatment but without isolation of organic extract from soil. Oxidation of this pretreated soil showed significant abatement of PAHs by AP. On the other hand, very low degradation was achieved by FP or SP. Selective degradation of PAHs was observed by AP with lower degradation efficiency towards high molecular weight PAHs. Analyses revealed that no by-products were formed during oxidation. The results of this study demonstrate that magnetite can activate persulfate at circumneutral pH for an effective degradation of PAHs in soils. However, availability of PAHs and soil matrix were found to be the most critical factors for degradation efficiency.  相似文献   

19.
Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and hu  相似文献   

20.
The photolysis of was studied for the removal of acetic acid in aqueous solution and compared with the H2O2/UV system. The radicals generated from the UV irradiation of ions yield a greater mineralization of acetic acid than the OH radicals. Acetic acid is oxidized by radicals without significant formation of intermediate by-products. Increasing system pH results in the formation of OH radicals from radicals. Maximum acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive reactions with the carbon mineralized inhibit the reaction of the solute with and also OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to ions, the presence of Cl ions enhances the efficiency of the /UV process towards the acetate removal. It is attributed to the formation of the Cl radical and its great reactivity towards acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号