首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three procedures for the extraction of coral lipids were compared and a rapid and effective method for future use is suggested. This method was used to measure the lipid content of the branching coral Porites porites (Pallas) and the massive corals Montastrea annularis (Ellis and Solander) and Siderastrea siderea (Ellis and Solander) during July and August 1991. P. porites and M. annularis were sampled on two fringing reefs, each characterised by different water quality affecting light transmission, and at depths of down to 30 m on a barrier reef on the west coast of the island. m. annularis contained, on average, 29% of dry weight as lipid, and there were no significant differences in lipid levels between corals sampled on either fringing reef at 3 and 6 m, or between fringing reefs and the barrier reef at 13, 20 or 30 m depth. Five samples were also taken from a single massive colony of S. siderea at 3 m on a fringing reef and at 13, 20 and 30 m depth on the barrier reef. Values for lipid ranged from 26 to 35% of dry tissue weight. P. porites from 3 and 6 m depth on both fringing reefs contained the same amount of lipid (11% of dry tissue weight). However, at 13 m depth on the barrier reef this coral contained significantly less lipid (8.5% of dry tissue weight). This difference may be attributable to a higher nutritional intake by P. porites on the fringing reefs.  相似文献   

2.
Coral reef conservation management policy often focuses on larval retention and recruitment of marine fish with scant data available on important, less motile reef-building species such as corals. To evaluate the concept of population connectivity in corals, we tested whether broadcast spawning reproduction per se confers the same degree of dispersal to two sister species, Montastraea annularis (Anthozoa: Scleractinia; Ellis and Solander 1786) and M. faveolata (Ellis and Solander 1786), both dominant taxa in reefs of the northern Caribbean. Genetic analyses of ten nuclear DNA loci (seven microsatellite and three single-copy RFLP) reveal strikingly different patterns of population genetic subdivision for these closely related, sympatric species, in spite of likely identical dispersal abilities. Strong population genetic structure typified the architecture of M. annularis, whereas M. faveolata populations were principally genetically well mixed. A higher level of clonality was observed in M. annularis potentially because of a susceptibility to physical fragmentation. Clonality did not, however, significantly contribute to population genetic structure or low-level Hardy–Weinberg and linkage disequilibria observed in some populations. The lack of consistent association between reproductive mode and dispersal reinforces the perspective that population connectivity is not so much a function of predictable marine population source and sink relationships as is due to a more complex interface of oceanic currents interacting with and amplifying stochastic fluctuations in larval supply and settlement success. Our results support others promoting an overall ecosystem approach in marine protected area design.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
T. Ikeda 《Marine Biology》1992,113(2):313-318
The fate of the polycyclic aromatic hydrocarbon [3H]benzo[a]pyrene (BaP) was examined in two species of scleractinian corals, Favia fragum (Esper) and Montastrea annularis (Ellis and Solander), which were collected in the patch reefs surrounding Alina's Reef (25°23.25N; 80°09.8W) in Biscayne National Park, Florida, USA, in July, 1990. Corals were exposed to initial concentrations of 5 g/l in a simple static system for 25 h. BaP uptake was estimated from the disappearance of BaP from the water. Uptake rates were 6.5±0.7 and 10.8±0.2 g BaP cm-2h-1 for F. fragum and M. annularis, respectively, at initial BaP concentrations and were directly proportional to the concentration of BaP in the water. The separation of zooxanthellae from coral tissue revealed that zooxanthellae can accumulate up to 53 and 64% of the total BaP-derived radioactivity present in F. fragum and M. annularis, respectively. Both corals metabolized BaP slowly, as most of the accumulated radioactivity was present as the unmetabolized chemical. However, aqueous and organic-soluble metabolites were found in both the animal and zooxanthellae fractions. Analysis by high-performance liquid chromatography (HPLC) revealed that both species of corals metabolized BaP to various tetrols, triols, dihydrodiols, quinones and phenols, although the pattern of metabolites differed between species. Zooxanthellae contained some of the same Phase I metabolites found in the animal tissue; however, tetrols and triols were absent in extracts from the zooxanthellae. The elimination of BAP from corals was also slow; approximately 38 and 65% of the accumulated radioactivity was still present in F. fragum and M. annularis, respectively, 144 h following the transfer of exposed corals to an uncontaminated flow-through seawater system.  相似文献   

4.
Total lipid of Meganyctiphanes norvegica (M. Sars) contained 53% triacylglycerols and traces of wax esters, that of Thysanoessa raschi (M. Sars) contained 44% triacylglycerols and 10% wax esters and that of T. inermis (Krøyer) contained 28% triacylglycerols and 40% wax esters. The triacylglycerols of M. norvegica were relatively rich in 20:1 and 22:1 fatty acids and its traces of wax esters resembled those of calanoid copepods. The triacylglycerols of both Thysanoessa species were deficient in 20:1 and 22:1 fatty acids but were richer in 16:1(n-7) and 18:1 (n-7) acids than those of M. norvegica. The wax esters of T. raschi contained phytol as almost the only fatty alcohol and were rich in 16:0 and 18:1 (n-9) fatty acids. The wax esters of T. inermis contained mainly 16:0 and 14:0 fatty alcohols with lesser amounts of phytol and their dominant fatty acid was 18:1, especially the (n-9) isomer. The triacylglycerols of T. inermis had 18:4 (n-3) as the major polyunsaturated fatty acid. From these and other aspects of fatty acid and fatty alcohol analyses it is concluded that a major foodstuff of M. norvegica in Balsfjorden is wax ester-rich calanoid copepods. T. raschi and especially T. inermis are concluded to have much more preference for phytoplanktonic food. Results are discussed in terms of current knowledge of the lipid chemistry of krill in the northern and southern hemispheres.  相似文献   

5.
Fourteen environmental variables were monitored at seven locations along the west coast of Barbados on a weekly basis over a one-year period, 1981 to 1982. The physicochemical and biological data indicate that an environmental gradient exists as a result of increased eutrophication of coastal waters. Growth rates (linear extension) of Montastrea annularis (Ellis and Solander), measured along the environmental gradient, exhibit high correlation with a number of water quality variables. Concentration of suspended particulate matter is the best univariate estimator of M. annularis skeletal extension rates (r 2=0.79, P<0.0001). The results suggest that suspended particulate matter may be an energy source for reef corals, increasing growth up to a certain maximum concentration. After this, reduction of growth occurs due to smothering, reduced light levels and reduced zooxanthellae photosynthesis.  相似文献   

6.
The potential role of competition for space in a community depends on the arrangement of interaction relationships. A survey (255 m2) of the interactions between corals (Scleractinia) on a Caribbean reef (depth 10–30 m) indicated the outcome of 17–35% of the aggressive and defensive interactions to be unpredictable. Experiments on the reef (depth 7–13 m) with pairs of interacting corals — Madracis mirabilis (Duchassing & Michelotti), Agaricia agaricites (L), Montastrea annularis (Ellis & Solander), Eusmilia fastigiata (Pallas) — showed that, after the initial contest through extracoelenteric digestion, there are at least two additional processes which can result in a reversal of dominance: interference by epifauna and sweeper tentacle development. Moreover, the impact of extracoelenteric digestion and the extent of sweeper tentacle development varied over the surface of the corals. Employing laboratory and field experiments to distinguish between the impact of extracoelenteric digestion, epifauna behaviour and sweeper tentacles, we show the three processes combined to explain the coral interaction process in toto. The outcome of the interaction process on the reef depends on numerous, partly unpredictable, variables, including mode of contact and effects of position. Consequently, patterns of community organization resulting from spatial competition will be slow to emerge and easily erased prematurely by disturbances.  相似文献   

7.
This report documents the extent to which coral colonies show fluctuations in their associations with different endosymbiotic dinoflagellates. The genetic identity of Symbiodinium from six coral species [Acropora palmata (Lamarck), A. cervicornis (Lamarck), Siderastrea siderea (Ellis and Solander), Montastrea faveolata (Ellis and Solander), M. annularis (Ellis and Solander), and M. franksi (Gregory)] was examined seasonally over five years (1998 and 2000–2004) in the Bahamas and Florida Keys at shallow (1 to 4 m) fore-reef/patch reef sites and at deeper fore-reef (12–15 m) locations. Symbionts were identified genetically using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the internal transcribed spacer region 2 (ITS2) of ribosomal RNA gene loci. Repetitive sampling from most labeled colonies from the Bahamas and the Florida Keys showed little to no change in their dominant symbiont. In contrast, certain colonies of M. annularis and M. franksi from the Florida Keys exhibited shifts in their associations attributed to recovery from the stresses of the 1997–1998 El Niño southern oscillation (ENSO) event. Over several years, a putatively stress-tolerant clade D type of Symbiodinium was progressively replaced in these colonies by symbionts typically found in M. annularis and M. franksi in Florida and at other Caribbean locations. Greater environmental fluctuations in Florida may explain the observed changes among some of the symbioses. Furthermore, symbiotic associations were more heterogeneous at shallow sites, relative to deep sites. The exposure to greater environmental variability near the surface may explain the higher symbiont diversity found within and between host colonies.  相似文献   

8.
Surface tissue of the reef coral Pocillopora capitata contained approximately 34% lipid on a dry weight basis. Of this, 75% was storage lipid (wax ester and triglyceride) and 25% structural (phospholipid, galactolipid, etc.). Based on chlorophyll a: lipid ratios of intact coral and isolated zooxanthellae, it was determined that over 90% of the storage lipid resided in the host tissue. One half of the structural lipids was found in the host and the other in the symbiotic algae. Gentle fractionation of coral tissue indicated that zooxanthellae possessed less than 14% of the total coral protein. Coral tips and isolated zooxanthellae were incubated with sodium acetate-1-14C in light and dark to obtain lipogenic rates and proportions of fatty acids and lipid classes synthesized. The rate of lipid synthesis from acetate-1-14C by intact coral was stimulated three-fold in the light (1200 lux), which indicated that the majority of coral lipogenesis occurred in the zooxanthellae. Intact coral triglycerides contained ca. 68% of the 14C-activity and wax esters ca. 21%. Zooxanthellae isolated by the Water Pik technique synthesized negligible amounts of wax ester, which implied that wax ester synthesis was a property of the animal tissue. Isolated zooxanthellae and intact coral synthesized identical triglyceride fatty acids from acetate-1-14C. This study provides evidence for a carbon cycle between host and symbiont whereby the zooxanthellae take up host-derived carbon (probably in the form of acetate), synthesize fatty acids using their photosynthetically derived energy, and return the lipid to the host where it appears as wax ester and triglyceride.  相似文献   

9.
The temperate sea anemoneAnemonia viridis (Forskäl) contained about 11% lipid on a dry weight basis when maintained at light levels of about 10µE m–2 s–1 and a temperature of 10°C. Aposymbiotic forms of the anemone had similar lipid levels. These values are very low compared with tropical symbiotic Anthozoa in which lipid levels constitute up to 50% of dry weight. In symbioticA. viridis, <6% of total lipid consisted of the storage lipids, wax esters and triglycerides. Most of the triglyceride was stored in the animal tissues rather than the zooxanthellae. Zooxanthellae contained only small amounts of wax esters. An analysis was made of the wax ester, triglyceride and fatty acid composition of symbiotic anemones, isolated zooxanthellae and aposymbiotic anemones. Wax ester composition was similar in symbiotic and aposymbiotic forms. However, triglyceride composition differed. In particular trimyristin (C42) was found only within the symbiotic association. Fatty acids showed a high degree of unsaturation, and acids with both even and odd numbers of carbon atoms were found. The most abundant fatty acid was 16:0 in all samples, except for the total lipids from zooxanthellae in which the major fatty acid wastrans-18:1.  相似文献   

10.
Acclimation of reef corals to environmental conditions has been related to metabolic response at large geographic scales, but regional relationships have rarely been described. Physiological responses to temperature increases of Montastraea annularis (Ellis and Solander 1786) from an inner lagoon and an outer barrier reef in the Gulf of Honduras, southern Belize, were compared in May 2003. The hypothesis that inferred differences in thermal history would result in contrasting responses to elevated temperature was tested. Ambient seawater temperatures adjacent to corals at 4–5 m depth were measured every 15 min at inner lagoon and outer barrier reef collection sites for 1 year (June 2002–May 2003). Monthly averages and 3-day running averages (warmest period, July–October 2002) of daily maximum seawater temperatures were significantly higher (by ∼0.5°C) at inner lagoon reef compared to outer barrier reef sites. M. annularis photosynthesis (P) and respiration (R) rates were measured in respirometers at six temperatures between 29°C and 35°C approximately every hour, with repeated measurements over 3 h. P and R were significantly lower across most temperature treatments for samples collected from the inner lagoon compared to outer barrier reef. Both inner and outer reef M. annularis displayed an increase in P and R with increasing temperature between 29°C and 32°C, but above 32°C P and R sharply declined. P/R ratio versus temperature showed a significant difference between the elevations of the regression lines suggesting that M. annularis from the outer barrier reefs may have been more physiologically stressed than those from the inner lagoon reefs when exposed to acute temperature changes. These results emphasize that thermal stress must be considered within the context of acclimation temperature, and that short-term exposures may have physiologically important effects on this species.  相似文献   

11.
Total fatty acid compositions of colonies of two hermatypic, reef-building corals collected during the day-time over a depth range of 21 m were determined to assess the effect of depth-related environmental factors upon the lipid content of these organisms. No systematic changes were found, suggesting a steady-state balance between algal and animal lipogenesis in these symbiotic partnerships. Stephanocoenia michelinii, a day and night feeder, contained lipids indicative of external dietary sources such as copepods, whereas Montastrea annularis, a night feeder, did not.  相似文献   

12.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

13.
Wax esters, which function as reserve fuels, account for 25 to 40% of the lipid of the pelagic copepod Calanus helgolandicus (Copepoda, Calanoida). In laboratory experiments with these crustaceans, diatoms (Lauderia borealis, Chaetoceros curvisetus, and Skeletonema costatum) and dinoflagellates (Gymnodinium splendens), which contained no wax esters, were used as food. Changes in the food concentration affected both the amount of lipid and the composition of the wax esters. Since the fatty acids of the triglycerides and wax esters of C. helgolandicus resembled the dietary fatty acid composition, it appeared that copepods incorporated their dietary fatty acids largely unchanged into their wax esters. The polyunsaturated alcohols of the wax esters did not correspond in carbon numbers or degrees of unsaturation to the dietary fatty acids. We postulate two different metabolic pools to explain the origin of these long chain alcohols. The phospholipid fatty acids were not affected by changes in the amount or type of food, probably because of their structural function.  相似文献   

14.
Lipid analyses were carried out on various species of zooplankton captured in Saanich Inlet, British Columbia, Canada, during September, 1972. The amphipod Cyphocaris challengeri had the highest level of lipid, consisting mainly of wax esters. The copepod Calanus pacificus had moderate amounts of lipid, with triglyceride as the major neutral lipid. The euphausiid Thysanoessa raschii contained mainly triglyceride in its moderate levels of neutral lipid, while wax esters and, to a lesser extent, triglycerides were present in the very small levels of neutral lipid in the chaetognath Sagitta elegans. The major fatty alcohols in wax esters of both Cyphocaris challengeri and Calanus pacificus were 20:1 and 22:1, although notable differences were found in the major fatty acids. Biosynthetic studies showed that phospholipids were labelled faster than neutral lipids in all species with both (U-14C) glucose and (1-14C) palmitic acid as precursors. Only species containing significant amounts of wax esters in their neutral lipids incorporated substantial amounts of radio-activity from (1-14C) palmitic acid into wax esters in (i) living animals, (ii) preparations containing fragments of tissue, (iii) cell-free systems. All species incorporated added fatty alcohols into wax esters in preparations containing tissue fragments and in cell-free preparations. Both the fatty acid and fatty alcohols of the wax esters of both Calanus pacificus and S. elegans were labelled from (1-14C) palmitic acid, consistent with de novo biosynthesis of the esters. (1-14C) hexadecanol was incorporated into wax esters almost entirely in the fatty alcohol moiety. It is concluded that all species examined formed was esters when presented with preformed fatty alcohols, but only those species that had wax esters as a major component of the neutral lipids were capable of de novo biosynthesis of the lipids.  相似文献   

15.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

16.
The calanoid copepods Calanus hyperboreus and C. finmarchicus were investigated in view of their lipid and wax ester content and their fatty acid and alcohol composition. Analyses were performed in females and copepodid stages V and IV from the Fram Strait region between Greenland and Spitsbergen in 1984. This region offers different food conditions like diatom blooms in the North East Water Polynya, food shortage in areas with very close ice cover, high phytoplankton biomass in the marginal ice zone and lower biomass in the open Atlantic water. Lipids contained generally more than 70% wax esters. Highest levels were found in C. hyperboreus with more than 90%. This percentage was not very variable, in spite of large differences in dry weight and lipid content. Copepods with particularly high weight and lipid content were found in the North East Water Polynya. The lightest individuals were found under the pack ice. Lipid proportions per unit dry weight were higher in C. hyperboreus than in C. finmarchicus, whose lowest values were found in the open Atlantic water. Spatial variability in fatty acid composition was much higher than in alcohol composition. The principle alcohols, 20:1 and 22:1, generally accounting for more than 80% of total alcohols. In the North East Water Polynya, the predominant monounsaturated fatty acid was 16:1, while under the ice 20:1 and 22:1 dominated. In the marginal ice zone and in the open water, the 18:4 acid reached percentages up to 30% of total fatty acids. These changes were related to the different food conditions. C. hyperboreus appears to be best adapted to the cold water and unfavourable conditions of polar regions because of its high lipid and wax ester store with long-chain wax esters of high calorific value.  相似文献   

17.
The fatty-acid composition of lipids from ovulated eggs of wild and cultured turbot was investigated in order to estimate the nutritional requirements during embryonic and early larval development. Lipid comprised 13.8±0.5% (n=5) and 13.2±0.7% (n=7) of the egg dry weight in wild and cultured turbot, respectively. Polyunsaturated fatty acids (PUFA) of the (n-3) series accounted for 39% of total fatty acids in total lipid of both wild and cultured fish. The predominant (n-3) FUFA was docosahexaenoic acid (22:6 n-3), which also was the most abundant fatty acid in turbot eggs and comprised 24 and 23% of the total egg fatty acids in wild and cultured fish, respectively. Phospholipids, triacylglycerols and cholesterol-wax esters of turbot eggs all exhibited a specific fatty-acid profile distinctly different from that of total lipid. The general pattern of the fatty-acid distribution in lipids of eggs from wild and cultured turbot was similar, but the relative amount of 18:2(n-6) was considerably higher and 20:1(n-9) slightly higher in cultured fish. These differences were extended to all lipid classes and probably reflect the dietary intake of certain vegetable and marine fish oils. Calculations based on light microscopical studies showed that 55 to 60% of the total lipids in cultured turbot eggs are confined to the oil globule. The size of the oil globule remained constant during embryogenesis, and a reduction in size occurred first after hatching and mainly after yolk depletion. This implies that the total amount of lipids utilised during the embryonic development is considerably less than the total lipids present in ovulated turbot eggs. Comparison of the fatty-acid composition of total lipids from eggs and vitellogenin of wild turbot reveals that egg lipids contained a lower level of saturated and a higher level of monounsaturated fatty acids. Eggs also contained wax esters, which were not detected in vitellogenin, suggesting that vitellogenin is not the only source of lipids for turbot eggs.  相似文献   

18.
The total lipid and wax ester content as well as the fatty acid and alcohol composition of all copepodid stages and adults of Calanus finmarchicus s.l. were investigated at different locations in the North Sea in 1983 and 1984. Total lipid and the wax ester proportion increased exponentially until Copepodid V. The females were sometimes lower in lipids than the Stage V. The wax ester proportion reached about 90% of total lipids in males and Copepodid V and up to 40% in Copepodid I. The major fatty acids were 16:0, 20:5, and 22:6 and the major fatty alcohols were 16:0, 20:1 and 22:1. At one station the 18:4 acid became one of the dominant acids, because of a Phaeocystis sp. bloom, indicating that the fatty acids of the diet are incorporated mostly unchanged into the lipids of the copepods. The other main fatty acids 20:1 and 22:1 are probably synthesized de novo, serving as precursors for the principal alcohols 20:1 and 22:1. Their levels decreased in the younger stages due to increases in 16:0 alcohol. The fatty alcohol-forming enzyme seems to be specific for saturated and monounsaturated acids, which may be synthesized de novo or derived from diet.  相似文献   

19.
The morphologically variable reef coral previously known as Montastraea annularis (Ellis and Solander, 1786) has recently been separated into three species based on differences in morphology, behavior, allele frequencies and some life-history traits of Panamanian specimens. To further investigate the proposed reclassification and its conformity to the biological species concept we conducted reciprocal intra- and inter- specific fertilization experiments with gametes from each of the three species on Florida reefs. With one exception, self-fertilization rates were very low or zero. Within-species crosses resulted in production of planulae, as did all inter-species (hybrid) crosses, but there was much variation in fertilization success within each type of cross. In an experiment with separated gametes, hybrid crosses between M. annularis and M. franksi produced more larvae than within-species crosses for each species. Hybridization crosses between M. faveolata and the other two species produced fewer larvae than did within- M. faveolata crosses in the experiment with separated gametes, but many larvae resulted when the hybridizations were performed by mixing entire gamete bundles. Additional observations showed that M. franksi had 20% larger eggs and fewer eggs per gamete bundle than did the other two species and that it consistently spawned 1 to 1.5 h before the others, a potential temporal barrier to hybridization. These results indicate that there is no inherent pre-zygotic barrier to cross-fertilization among the three morphological species, although post-zygotic survival and fertility remain to be determined. The adherence of the proposed reclassification to the biological species concept requires further examination. Received: 16 April 1997 / Accepted: 17 June 1997  相似文献   

20.
The composition of lipids and fatty acids was determined for the livers, muscle, pancreas, kidney and stomach fluids of deepwater chondrichthyan species (including 11 squaliformes, 3 chimaeriformes, 1 hexanchiforme and 3 carcharhiniformes) caught as bycatch from continental waters off south-eastern Australia. The lipid class, fatty acid and fatty alcohol composition differed markedly in each tissue and in each species. The lipid and fatty acid composition of large, lipid-rich (38–70% wet weight, ww) livers demonstrated the multifunctional role of this organ in: lipid distribution, storage and biosynthesis, and buoyancy regulation. In the liver, the importance of certain lipids (including squalene, diacylglyceryl ethers, triacylglycerols and to a lesser extent wax esters) as mediators of buoyancy varied according to lifestyle and habitat. Less variability was observed in the muscle profiles, characterized by low lipid content (<1.0% ww) and high relative levels of polar lipids (>70%). The lipid and fatty acid profiles of the kidney and pancreas showed the highest intraspecific variability, suggesting these organs also have complex roles in lipid storage and metabolism. Overall intra- and interspecific differences in the tissue fatty acid profiles could be related to differences in a number of factors including phylogeny, habitat (depth), buoyancy regulation and diet and presumably also reflect different ecological roles. The lipid and fatty acid profiles are the first published for Rhinochimaera pacifica, Chimaera lignaria and Figaro boardmani and the first to demonstrate interspecific variation in lipid profiles of various tissues of deepwater chondrichthyans. The application of multivariate analysis to lipid class and fatty acid tissue profiles in chondrichthyans inferred dietary differences and metabolic preferences between species and habitats. These results have important implications for the future use of fatty acids as dietary tracers in chondrichthyan research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号