首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
Cadmium (Cd) shows high toxicity to aquatic microalgae. Many studies showed that Cd inhibited activities of photosystem II (PSII) but the effects of heavy metals on photosystem I (PSI) and cyclic electron flow (CEF) were still controversial and unclear. The effects of CdCl2 on the activities of PSI, PSII and CEF in Chlorella pyrenoidosa was measured simultaneously in the present study. In presence of 200 μM of Cd, ultrastructure of some cells was strongly modified. Cd exposure led to decrease of the activities of photosynthetic oxygen evolution and respiration. PSII was more sensitive to Cd treatment than PSI. Cd treatment showed significant inhibition on the photochemical quantum yield and electron transport rate of PSII. Cd increased the quantum yield of non-light-induced non-photochemical fluorescence quenching, indicating the damage of PSII. The activity of PSI showed tolerance to Cd treatment with concentration less than 100 μM in the experiment. Linear electron flow (LEF) made significant contribution to the photochemical quantum yield of PSI of the untreated cells, but decreased with increasing Cd concentration. The contribution of CEF to the yield of PSI increased with increasing Cd concentration. The activation of CEF after exposure to Cd played an essential role for the protection of PSI.  相似文献   

2.
Cadmium (Cd) is a widely spread pollutant and can be easily taken up by crop from soil, resulting in a serious health issue for humans. The objective of this study was to comparatively investigate the photosynthetic activity, chlorophyll a fluorescence, chlorophyll contents, and spectral reflectance in mature and young leaves of soybean plants after being treated with different concentrations of Cd for 10 days. The photosynthetic rate, chlorophyll contents, actual photochemical efficiency of PSII, and photochemical quenching in the young leaves decreased more significantly with increasing concentrations of Cd in the nutrient solution, compared with those in the mature leaves, though the young leaves had less Cd concentrations. Thus, there was more excessive excited energy produced in the young leaves than that in the mature leaves. In the young leaves, due to more excessive excited energy, more reactive oxygen species may be generated, which further damaged the photosynthetic apparatus. It was supported by the fact that the decrease of reflectance in near-infrared wavelengths of the young leaves was more noticeable than that of the mature leaves. In addition, the chlorophyll a fluorescence transients of the young leaves was significantly different from that in the mature leaves, indicating that the electron transport of young leaves were inhibited much more severely than that of the mature leaves. These observations imply that the responses of photosynthetic activity of soybean leaves to Cd stress depend on their growth stage, and the Cd-induced inhibition of photosynthetic activity might be attributed to the decrease in chlorophyll contents and the decrease in mesophyll CO2 assimilation ability cause by the Cd, which further decreased the consumption of ATP and NADPH, leading to accumulation of NADPH on the acceptor sides of the PSI, and then feedback inhibited electron transport in chloroplasts.  相似文献   

3.
The redox state of glutathione and ascorbate as well as the activity of superoxide dismutase classes were determined in leaves of Arabidopsis thaliana grown for seven days in the nutrient solution containing 0, 5 and 50 microM Cd or Cu excess. A decrease in GSH/GSSG ratio was found in plants under Cd and Cu stress. In the plants exposed to Cu stress the activity of all SOD classes increased. However, in the plants treated with Cd the activity of FeSOD and MnSOD was elevated, but CuZnSOD activity was diminished in comparison with control. In these plants the activity of SOD classes was dependent on both the GSH/GSSG and AA/DHA ratios, while in those exposed to Cu excess - on the GSH/GSSG ratio. Differences were shown in the changes both in redox state and activity of SOD classes caused by the metals differing in physiochemical properties. Moreover, relationships between changes in SOD class activities and ROS levels were discussed.  相似文献   

4.
The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg?g?1 of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg?g?1 (Cu) to 15.21 mg?g?1 (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.  相似文献   

5.
Singh S  Eapen S  D'Souza SF 《Chemosphere》2006,62(2):233-246
Bacopa monnieri L. plants exposed to 10, 50, 100 and 200 microM cadmium (Cd) for 48, 96 and 144 h were analysed with reference to the accumulation of metal and its influence on various enzymatic and non-enzymatic antioxidants, thiobarbituric acid reactive substances (TBARS), photosynthetic pigments and protein content. The accumulation of Cd was found to be increased in a concentration and duration dependent manner with more Cd being accumulated in the root. TBARS content of the treated roots and leaves increased with increase in Cd concentration and exposure periods, indicating the occurrence of oxidative stress. Induction in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) was recorded in metal treated roots and leaves of B. monnieri. In contrast, a significant reduction in catalase activity in Cd treated B. monnieri was observed. An increase was also noted in the levels of cysteine and non-protein thiol contents of the roots of B. monnieri followed by a decline. However, in leaves, cysteine and non-protein thiol contents were found to be enhanced at all the Cd concentrations and exposure periods. A significant reduction in the level of ascorbic acid was observed in a concentration and duration dependent manner. The total chlorophyll and protein content of B. monnieri decreased with increase in Cd concentration at all the exposure periods. Results suggest that toxic concentrations of Cd caused oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, B. monnieri is able to combat metal induced oxidative injury involving a mechanism of activation of various enzymatic and non-enzymatic antioxidants.  相似文献   

6.
Zhou W  Juneau P  Qiu B 《Chemosphere》2006,65(10):1738-1746
Effects of cadmium (Cd) on the growth and photosynthesis of the bloom-forming cyanobacterium Microcystis aeruginosa Kütz 854 were investigated. The growth was markedly inhibited when it was treated with 4 microM Cd. However, the biomass production was almost not influenced after a prolonged exposure at Cd concentrations < or = 2 microM. Chlorophyll content was more sensitive to Cd toxicity than phycobiliproteins at 0.5 microM Cd. However, the decrease of phycobiliproteins was larger than chlorophyll at the highest Cd concentration. A significant increase of F(v)/F(m) value was observed at Cd concentrations < or = 2 microM. On the other hand, when cells were treated with 4 microM Cd, F(v)/F(m) was significantly increased after 12 h of treatment but decreased after 48 h. The true photosynthesis was decreased with the increase of Cd concentration at 2 h. However, we noticed a recovery when the treatment was prolonged. After 48 h of exposure at the highest Cd concentration, photosynthetic oxygen evolution was markedly inhibited but dark respiration increased by 67%. Cellular Cd contents were augmented with the increase of Cd concentration. To our knowledge, we have demonstrated for the first time that the inhibitory site of Cd in M. aeruginosa is not located at the PSII or PSI level, but is probably situated on the ferredoxin/NADP(+)-oxidoreductase enzyme at the terminal of whole electron transport chain. We noticed also an increase of PSI activity, which is probably linked to the enhancement of cyclic electron transport around PSI. We can conclude that the increase of cyclic electron transport and dark respiration activities, and the decrease of phycobiliproteins might be adaptive mechanisms of M. aeruginosa 854 under high Cd conditions.  相似文献   

7.
The present study was focused on the effect of increasing urbanization including industrial and traffic activity on the accumulation of heavy metals and possible damage of selected physiological parameters (composition of assimilation pigments, membrane lipid peroxidation, and membrane integrity) of an epiphytic foliose lichen, Flavoparmelia caperata (L.) Hale. The lichen samples were collected from three different localities in and around Kolkata, India, two sites being from the urban area and one from the relatively non-polluted sub-urban area. The results showed that thalli from the urban sites have significantly higher concentrations of Fe, Cr, Cu, Zn, and Pb compared to those collected from the sub-urban site. Physiological parameters of damage also exhibited stress symptoms in thalli from the urban sites—decreased chlorophyll a indicating less photosynthetic efficiency, and increase in lipid peroxidation and electrolyte conductivity indicating cell membrane injuries. Correlation studies among metals pinpointed vehicular traffic as the main source of pollution in this area.  相似文献   

8.
Ozone is a widely distributed phytotoxic air pollutant and is known to reduce the yield of several important agricultural crops in Spain. However, benomyl has been found to lessen the adverse impact of ozone on plants. We studied the effects of ozone and benomyl on chlorophyll a fluorescence, antioxidant enzymes, and lipid peroxidation in tomato (Lycopersicon esculentum Mill. cv. Tiny Tim) grown in open-top chambers in the field. Our results indicate that benomyl prevented the peroxidation of membrane lipids and increased protection of PSII from ozone. There was also a significant reduction in the activity of the antioxidant enzyme superoxide dismutase in ozone-exposed plants that had not been treated with benomyl. Comparing plants treated with benomyl to untreated plants we found that, on exposure to ozone, a greater fraction of light absorption energy was cycled through the photosynthetic system in benomyl-treated plants, as shown by the higher PSII-mediated electron flow and the higher fraction of open PSII reaction centers. The values analyzed in the fluorescence parameters and lipid peroxidation were similar for plants without benomyl grown in a charcoal-filtered environment and benomyl-treated plants exposed to ozone.  相似文献   

9.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

10.
Sinha S  Saxena R  Singh S 《Chemosphere》2005,58(5):595-604
In the plant, Pistia stratiotes L., the effect of different concentrations of chromium (0, 10, 40, 80 and 160 microM) applied for 48, 96 and 144 h was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), cysteine, non-protein thiol, ascorbic acid contents and superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) activity of the plants. Both in roots and leaves, an increase in MDA content was observed with increase in metal concentration and exposure periods. In roots, the activity of antioxidant enzymes viz. SOD and APX increased at all the concentrations of Cr at 144 h than their controls. The GPX activity of the treated roots increased with increase in Cr concentration at 48 and 96 h of exposures, however, at 144 h its activity was found declined beyond 10 microM Cr. The level of antioxidants in the roots of the treated plant viz. cysteine and ascorbic acid was also found increased at all the concentrations of Cr at 144 h than their respective controls, however, an increase in the non-protein thiol content was recorded up to 40 microM Cr followed by decrease. The chlorophyll content decreased with increase in Cr concentrations and exposure periods. However, the protein content of both roots and leaves were found decreased with increase in Cr concentrations at all the exposure periods except an increase was recorded at 10 microM Cr at 48 h. In Cr treated plants, the no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for leaves chlorophyll and protein contents were 40 and 80 microM Cr, respectively after 48 h exposure while NOEC and LOEC for root protein content were 10 and 40 microM, respectively after 48 h. The analysis of correlation coefficient data revealed that the metal accumulation in the roots of the plant was found positively correlated with antioxidant parameters except SOD after 48 h of exposure, however, negatively correlated with most of all the parameters studied at 144 h in both part of the plant. It may be suggested from the present study that toxic concentrations of Cr cause oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, the higher levels of enzymatic and non-enzymatic antioxidants suggest the reason for tolerating higher levels of metals.  相似文献   

11.
Sun Q  Wang XR  Ding SM  Yuan XF 《Chemosphere》2005,60(1):22-31
Phytochelatins (PCs) have been proposed as a potential biomarker for metal toxicity. In this study, cadmium (Cd) toxicity, PCs production and their relationship in wheat under Cd stress were examined using various exogenous organic chelator-buffered nutrient solutions. Single Cd stress produced strong toxic effects, as indicated by decreases of growth parameters, high level of lipid peroxidation in leaf and overproduction of PCs in root. Exogenous organic chelators with proper dose more or less reduced Cd toxicity by increasing growth parameters and decreasing lipid peroxidation in leaves. Of organic chelators (EDTA, DTPA, citric acid, malic acid and oxalic acid), EDTA was the most effective in decreasing Cd toxicity in plants, followed by DTPA and citric acid. Simultaneously, the concentrations of Cd-induced PCs in roots decreased, and the greatest decrease was caused by application of EDTA and DTPA. Linearly positive relationships were observed between Cd toxicity and root PCs concentrations under the influences of organic chelators, particularly EDTA, DTPA and citric acid. Furthermore, present results provide stronger evidence that PCs synthesis in plant cells was related to free Cd ion concentrations, not total Cd, and demonstrate that the levels of PCs production in plants correlated well with toxic effects caused by the bioavailable Cd levels.  相似文献   

12.
选取再力花、美人蕉、水烛、旱伞草、梭鱼草、慈姑、菖蒲、水葫芦和大藻9种植物作为实验植物,构建成以高效净化重金属污染水体为主要功能的组合式水生植物高效净化系统(人工湿地+生态浮床+水生植物塘3个处理单元串联而成),研究不同处理单元中水生植物对重金属Cu、Pb和cd的去除能力及富集特征。结果表明,该净化系统经过为期60d的连续运行,对Cu、Pb和Cd的去除率较为稳定,可分别达到Cu93.5%~96.1%、Ph94.5%~95.2%和Cd95.6%~97.4%,3种重金属出水浓度均可达到GB3838-2002Ⅲ类水排放要求;其中人工湿地单元对重金属去除贡献率最高,Cu、Pb和Cd分别为54.15%、33.61%和44.84%,其次为生态浮床处理单元,Cu、Pb和Cd的去除贡献率分别为38.61%、51.42%和38.56%,而水生植物塘主要起到深度处理作用,对Cu、Pb和cd的去除贡献率分别为7.24%、14.97%和16.6%。9种植物在系统运行期间,生长状况良好,且重金属累积量较高,尤其是生物塘系统中的水葫芦和大藻,实验期间其重金属生物富集系数(BCF)均在200以上。所选植物不同部位对3种重金属的吸收富集能力均表现为根最强。  相似文献   

13.
The paper studies changes in the content and composition of lipids in the membranes of chloroplasts, mitochondria and microsomes of the aquatic plant Hydrilla verticillata exposed to copper ions (100 μM; 1, 3, 6 and 24 h). The rate of copper accumulation and the coefficient of its extraction by the plant were also determined. The presence of copper in the incubation medium and its accumulation in the plant tissues decreased the content of photosynthetic pigments, stimulated lipid peroxidation and enhanced membrane permeability. The gradual accumulation of copper in the plant tissues was accompanied by specific changes in the composition of lipids: the content of sulfolipids (SQDG) in chloroplasts declined; the content of monogalactosyl diacylglycerols (MGDG), digalactosyl diacylglycerols (DGDG) and phosphatidyl glycerols (PG) in chloroplasts and mitochondria grew after an hour of copper exposure; and the content of all the lipids except phosphatidic acids (PA) decreased after 3 h of exposure. The decline in the content of phosphatidyl cholines (PC) was first observed in the membranes of microsomes (after an hour of exposure) and later in the membranes of chloroplasts and mitochondria (after 3-6 h of exposure). The experiments with incorporation of [2-14C]sodium acetate into fatty acids of polar lipids showed that in parallel with lipid destruction, there took place an intensive and specific renewal of the lipid pool of subcellular membrane fractions.  相似文献   

14.
Verlecar XN  Jena KB  Chainy GB 《Chemosphere》2008,71(10):1977-1985
Sub-lethal effects of mercury exposure (110th of LC(50), i.e. 0.045 mg l(-1)) for 5, 10 and 15 d was investigated on oxidative stress parameters and antioxidant defences in digestive gland of Perna viridis. In addition to this an in vitro effect of mercury single and supplemented with reduced glutathione on lipid peroxidation was studied. Increased lipid peroxidation (during first 10 days and also during in vitro exposures), protein carbonyl and hydrogen peroxides (from 5th till last day of exposure) indicate the resultant oxidative stress in the mercury exposed specimen. DNA damage (F-value) response although less distinct on 5th and 15th d, its low values on 10th d and significant correlation with hydrogen peroxide suggests the toxic role of free radicals towards DNA integrity. Superoxide dismutase, which remains low initially (5th d) and increases later suggests its immediate response against superoxide radical. Higher activities of catalase, glutathione peroxidase and glutathione reductase on 15th d and glutathione-S-tranferase from 10th d onwards suggests the adaptive behaviour of the tissue against oxyradicals. Increasing levels of non-enzymatic antioxidant molecules, such as reduced glutathione and ascorbic acid indicated its involvement in counteracting oxidative damage. Further role of reduced glutathione in reducing Hg toxicity is evident in in vitro experiments where lipid peroxidation remains low in mercury concentrations supplemented with reduced glutathione. The elevated levels of metallothionein from 5th to 10th d suggest involvement of this protein in detoxification of reactive oxygen species and toxic metal. The above results suggest that both enzymatic and non-enzymatic antioxidants play an important role in protecting cell against Hg toxicity, which can be used as a biomarker of metal contamination in aquatic environment.  相似文献   

15.
4A沸石对复合污染水体中Pb2+、Cu2+和Cd2+的去除   总被引:2,自引:2,他引:0  
采用静态吸附法以4A沸石为吸附剂研究其对复合污染水体中Pb2+、Cu2+和Cd2+的竞争吸附特性,并探讨了影响吸附的环境因素。实验表明,在室温条件下,溶液pH5~6,4A沸石15 mg对10 mL复合污染溶液(Pb2+、Cu2+和Cd2+浓度分别为100 mg/L)吸附20 min时,对溶液中3种重金属的吸附去除率均可达99.8%以上。反应过程中4A沸石对3种重金属的吸附速率大小为Pb2+>Cu2+>Cd2+。复合污染水体中4A沸石对Pb2+、Cu2+和Cd2+的吸附符合Langmuir和Fre-undlich等温吸附方程,相关系数分别为0.9981、0.9901、0.9916和0.9638、0.9194、0.9689。经计算,4A沸石对Pb2+、Cu2+和Cd2+的饱和吸附量分别为129.9 mg/g、107.5 mg/g和99.0 mg/g。4A沸石吸附重金属离子达到吸附平衡的时间较短,对溶液pH值的适应性较好。吸附后的4A沸石可以再生利用,对铅离子洗脱重复利用性较铜离子和镉离子强。  相似文献   

16.
Lu CM  Chau CW  Zhang JH 《Chemosphere》2000,41(1-2):191-196
Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.  相似文献   

17.
Wobst M  Wichmann H  Bahadir M 《Chemosphere》2001,44(5):981-987
The distribution behavior of Pb, Cd, Fe, Cu, Mo and Zn was determined in a laboratory-scale incinerator. Points of interest were the influence of the temperature and combustion atmosphere on the emission rates of those metals, orientating at frequent combustion conditions of accidental fires. The experiments were carried out at 600 degrees C and 800 degrees C in N2, air, N2 + HCl and air + HCl atmospheres. Furthermore, the influence of the matrix (quartz, polyethylene and cellulose powder) on the distribution behavior of the heavy metals was investigated as well. It was determined whether the distribution behavior of Cu, Pb and Cd were affected by the other heavy metals. In conclusion, it was found that in air and N2 atmosphere a temperature increase from 600 degrees C to 800 degrees C and the addition of the matrix had no effect on the evaporation rates of the heavy metals, except for Cd. Addition of gaseous HCl led to increased evaporation of the heavy metals. The increase of the evaporation rates during the experiments with matrix was higher for Fe, remained the same for Pb, Cd, Zn, and lower for Mo and Cu compared to the experiments without matrix.  相似文献   

18.
In this study, we quantified the accumulation and toxicity of cadmium and copper in a freshwater green alga, Chlamydomonas reinhardtii, under different phosphate conditions. The accumulated Cd and Cu concentrations increased significantly with increasing ambient P concentrations and free metal ion concentrations. The metal:P ratio remained independent of the ambient P concentration. For the three pulse-amplitude-modulated parameters, the median inhibition concentrations were 1.5-1.6x and 2.0x higher, but the medium inhibition cellular quota was 2.2x and 1.2x lower for cells maintained at 0.1 microM P than for cells maintained at 10 microM P for Cd and Cu, respectively. Furthermore, the difference in metal toxicity decreased (for Cd) or disappeared (for Cu) when the toxicity was expressed by the metal:P ratio in the cells, indicating that the stoichiometry of metals and P can be better used to predict the toxicity of metals. It is necessary to consider the stoichiometry of metals in predicting metal toxicity in phytoplankton.  相似文献   

19.
A set of toxic metals, i.e. As, Hg, Pb, Cd, Cu, Zn, Ni and Cr, in urban and suburban SDSs were investigated comparatively in the biggest metropolitan area of China, Shanghai. Results showed that all of the metals except As were accumulated greatly, much higher than background values. Geo-accumulation index indicated that metal contamination in urban SDSs was generally heavier than that in suburban SDSs. Potential ecological risk index demonstrated that overall risks caused by metals were considerable. Cd contributed 52% to the overall risk. Multivariate statistical analysis revealed that in urban SDSs, Zn, Ni, Cd, Pb, Cu and Cr were related to traffic and industry; coal combustion led to elevated levels of Hg; soil parent materials controlled As contents. In suburban SDSs, Pb, Cu, As and Cd largely originated from traffic pollution; Zn, Ni and Cr were associated with industrial contaminants; Hg was mainly from domestic solid waste.  相似文献   

20.
Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K(d)) decreased (p<0.01) with increasing amendments of Cu and Zn; Cu exhibited the highest K(d) values. Gompertz functions of Cu and Zn, K(d) values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号